Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Позиционные задачи

    В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций.

    В технике детали большинства изделий имеют формы, представляющие собой поверхности, пересечённые либо плоскостями, либо другими поверхностями. Для того, чтобы проектировать и изготавливать такие изделия, необходимо научиться строить линии пересечения различных геометрических фигур. В этом вам поможет данный раздел начертательной геометрии.

    Позиционными задачами называют такие, в которых определяется взаимное расположение геометрических фигур в пространстве.

    Существует три типа позиционных задач:

    Взаимный порядок геометрических фигур.

    Взаимная принадлежность геометрических фигур.

    Взаимное пересечение геометрических фигур.

    Первые две задачи были рассмотрены в предыдущих разделах курса.. Взаимный порядок геометрических фигур - это расположение геометрических фигур относительно плоскостей проекций и наблюдателя: "ближе - дальше", "выше - ниже", "левее - правее" и т.д. Взаимная принадлежность геометрических фигур - это "точка принадлежит ...", "прямая принадлежит ..." и т.д.

    Рассмотрим подробнее всё многообразие решений третьего типа задач.

    Взаимное пересечение геометрических фигур.

    Две геометрические фигуры, пересекаясь, дают общий элемент:

    Прямая с прямой - точку (а Ç b Þ К).

    Прямая с плоскостью - точку (а Ç S Þ К).

    Прямая с поверхностью - одну или несколько точек (а Ç D Þ К, М ...).

    Плоскость с плоскостью - прямую линию (S Ç Г Þ а).

    Плоскость с поверхностью - плоскую кривую или плоскую ломаную (S Ç D Þ m).

    Поверхность с поверхностью - пространственную кривую или несколько пространственных кривых, которые, в свою очередь, могут состоять из плоских кривых или плоских ломаных (D Ç L Þ m).

    Из всего многообразия этих задач выделяются две общие задачи, которые называют главными позиционными задачами:

    Первая главная позиционная задача (1 ГПЗ) - пересечение линии с поверхностью (первые

    три задачи).

    Вторая главная позиционная задача (2 ГПЗ) - взаимное пересечение двух поверхностей

    (4, 5 и 6 задачи).

    При этом следует помнить, что плоскость - это частный случай поверхности, поэтому условимся пересечение плоскостей или плоскости с поверхностью относить ко 2 ГПЗ.

    При решении 2 ГПЗ сначала необходимо выяснить, что будет являться общим элементом у двух пересекающихся поверхностей. Чаще всего бывает следующее:

    а) Пересекаются два многогранника - общий элемент есть пространственная ломаная линия, состоящая из отдельных звеньев (каждое звено - прямая линия), как результат пересечения граней многогранников; звенья между собой соединены в точках А, В, С ..., которые представляют собой точки пересечения рёбер первого многогранника с гранями второго и наоборот (рис. 3-1).

    Рис. 3-1

    б) Пересекаются многогранник с кривой поверхностью (например, тор с пирамидой). Общий элемент - пространственная кривая линия, состоящая из отдельных звеньев. Каждое звено есть результат пересечения граней многогранника с кривой поверхностью (звенья m, n, k ...- есть плоские кривые). Звенья между собой соединены в точках А, В, С, D, которые представляют собой результат пересечения рёбер многогранника с кривой поверхностью (рис. 3-2а).

    Рис. 3-2а

    Рис. 3-2б

    в) Пересекаются две кривые поверхности (например, сфера с конусом). Общий элемент - пространственная кривая линия (рис. 3-2б).

    Далее необходимо определить количество общих элементов пересекающихся поверхностей. Определяется оно в зависимости от характера пересечения поверхностей.

    Характер пересечения поверхностей

    Например, пересекаются конус Ф, окружность основания которого параллельна П1, и фронтально проецирующий цилиндр D (рис. 3-3).

    Такой характер пересечения, когда одна из поверхностей насквозь пронзает другую, называется чистое проницание. В этом случае линий пересечения две (на рис. 3-3 это m и n).

    Рис. 3-3

    Характер пересечения поверхностей, представленный на рис. 3-4, когда очерки поверхностей касаются в одной точке, является частным случаем проницания, когда линий пересечения две (m и n), но с одной общей точкой (А).

    Рис. 3-4

    Характер пересечения поверхностей, представленный на рис. 3-5, когда одна из поверхностей "вдавливается" в другую, называется вмятие. В этом случае линия пересечения одна (на рис. 3-5 это - m).

    Рис. 3-5

    Решение позиционных и метрических задач