Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Построение плоскости, касательной к поверхности

    Касательная плоскость - это множество всех касательных прямых, проведённых к данной кривой поверхности и проходящих через одну её точку.

    На чертеже плоскость, касательную к поверхности, можно задавать, например, двумя пересекающимися прямыми, каждая из которых является касательной к поверхности в данной точке. Но можно касательную плоскость задавать различными условиями, характер которых зависит от вида поверхности.

    Например, к конусу касательную плоскость можно провести так, чтобы она проходила через точку М (рис. 4-20), расположенную вне поверхности конуса. Причём, такая задача имеет два решения, так как через данную точку можно провести две плоскости, касающиеся поверхности конуса по образующим SK и SK', которые в то же время являются касательными, соответственно, t и t'.

    Рис. 4-20

    Как вы думаете?

    1. Сколько плоскостей, касательных к поверхности конуса, можно провести через его вершину без других дополнительных условий?

    2. Существуют ли особые точки на поверхностях сферы или эллипсоида, или они состоят только из обыкновенных точек? Для ответа на этот вопрос Вам нужно посмотреть модуль № 1, раздел "Касательная и нормаль к кривой", стр. М1-30.

    3. Сколько касательных плоскостей можно провести к эллипсоиду через любую точку на его поверхности?

    Задача: Через точку М(М2) на сфере Г с центром в точке О провести плоскость S, касательную к её поверхности (рис. 4-21).

    Рис. 4-21

    Так как любая прямая, принадлежащая касательной плоскости к сфере, будет перпендикулярна к её радиусу, то задача сводится к построению плоскости, перпендикулярной прямой. Плоскость удобно задать двумя пересекающимися прямыми, каждая из которых будет перпендикулярна радиусу сферы.

    Алгоритм:

    1. Находим М1 по принадлежности сфере (рис 4-22).

    Рис. 4-22

    2. Проводим R1 и R2 из центра сферы О1 и О2 к точкам М1 и М2.

    3. Проводим t1 ^ R1 - это горизонтальная проекция прямой, перпендикулярной радиусу, а, следовательно, касательной к сфере. Поскольку, прямой угол на П1 спроецирован в натуральную величину, то прямая t -горизонталь, и её проекция на П2 будет перпендикулярна линиям связи Þ t2.

    4. Аналогично проводим построения второй касательной t', которая перпендикулярна радиусу (рис. 4-23): t2' ^ R2, t1' ^ линиям связи, то есть t' - фронталь.

    5. Плоскость S(t Ç t') ^ R Þ S - касательная к сфере.

    Примечание: В данной задаче видимость поверхности не учитывалась.

    Рис. 4-23

    Алгоритмическая запись решения:

    1. М Î Г Þ М1.

    2. ОМ = R Þ O1M1 = R1, O2M2 = R2.

    3. S(t Ç t') = M; t=h, t ^ R Þ t1 ^ R1, t2 ^ M2M1.

    4. t' = f, t' ^ R Þ t2' ^ R2, t1' ^ M2M1.

    5. S ^ R Þ S - È Г.

    Для решения этой задачи можно использовать другие рассуждения.

    1. Для нахождения точки М1 проводим параллель а(а2, а1) на поверхности сферы (рис. 4-24).

    Рис. 4-24

    2. Проводим t - касательную к окружности а(а1, а2). t1 будет перпендикулярна радиусу сферы R1, а t2, как касательная к а2, совпадёт с а2.

    3. Проводим через точку М касательную прямую к окружности с(с1, с2) (рис. 4-25). t2', как касательная к с2, будет перпендикулярна радиусу R2, а t1', как касательная к с1, совпадёт с с1.

    Рис. 4-25

    4. Конечный результат этой задачи тот же, что и рассмотренный выше, и представлен на рис. 4-23.

    Решение позиционных и метрических задач