Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Преобразование комплексного чертежа

    Как вы думаете?

    На каком из чертежей проще всего найти натуральную величину расстояния от точки М до прямой а?

    Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

    В то же время задачи решаются значительно проще в случае частного положения геометрических фигур относительно плоскостей проекций. При этом наиболее выгодным частным положением проецируемой фигуры следует считать:

    а) положение, перпендикулярное плоскости проекций;

    б) положение, параллельное плоскости проекций.

    Переход от общего положения геометрической фигуры к частному можно осуществить за счёт изменения взаимного положения проецируемой фигуры и плоскостей проекций.

    Это достигается двумя путями:

    во-первых, перемещением плоскостей проекций в новое положение, по отношению к которому проецируемая фигура, которая при этом не меняет своего положения в пространстве, окажется в частном положении;

    во-вторых, перемещением в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве.

    Первый путь лежит в основе способа замены плоскостей проекций, второй - способа вращения вокруг проецирующих осей.

    Существуют и другие способы преобразования.

    Вообще, всякое построение на комплексном чертеже, отображающее определённые построения в пространстве, и приводящее к образованию новых полей проекций, называется преобразованием комплексного чертежа.

    Рассмотрим два основных способа преобразования комплексного чертежа.

    Способ замены плоскостей проекций

    Сущность способа состоит в том, что одна из плоскостей проекций (П1 или П2) (рис. 4-31) заменяется новой плоскостью проекций так, чтобы геометрическая фигура, занимая общее положение в системе плоскостей проекций П1 – П2, в новой системе плоскостей проекций (например, П1 – П4), оказалась бы в частном положении (т.е. меняем П2 на П4). При этом не должен нарушаться принцип метода Монжа, то есть новая плоскость проекций, например, П4, должна быть перпендикулярна остающейся плоскости проекций П1.

    Рис. 4-31

    При построении проекции геометрической фигуры на новую плоскость проекций П4 расстояние от фигуры до остающейся плоскости проекций П1 сохраняется неизменным.

    Рассмотрим построение точки на новую плоскость проекций:

    В системе П1 – П2 задана точка А (рис. 4-32). Ввести новую плоскость проекций П4 взамен П2 , и построить проекцию точки А на П4.

    Пространственная модель

    Рис. 4-32

    Алгоритм:

    1. Имеем систему плоскостей проекций П1 – П2 - база отсчёта х12.

    2. Меняем П2 на П4; П4 ^ П1. В системе П1 – П4 база отсчёта х14. Проводим АА4 ^ П4; но П4 ^ П1, следовательно АА4 || П1, значит АА4 = А12 и А12 ^ х14; тогда А42 || А1А и 2А4 = 1А2.

    3. Далее, используя метод Монжа, поворачиваем П4 вправо до совмещения её с П1. Получаем П4(совм.). Точка А4 займёт положение А4(совм). Расстояние 2А4 = 2А4(совм.).

    Решение позиционных и метрических задач