Начертательная геометрия

Преобразование комплексного чертежа

Как вы думаете?

На каком из чертежей проще всего найти натуральную величину расстояния от точки М до прямой а?

Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

В то же время задачи решаются значительно проще в случае частного положения геометрических фигур относительно плоскостей проекций. При этом наиболее выгодным частным положением проецируемой фигуры следует считать:

а) положение, перпендикулярное плоскости проекций;

б) положение, параллельное плоскости проекций.

Переход от общего положения геометрической фигуры к частному можно осуществить за счёт изменения взаимного положения проецируемой фигуры и плоскостей проекций.

Это достигается двумя путями:

во-первых, перемещением плоскостей проекций в новое положение, по отношению к которому проецируемая фигура, которая при этом не меняет своего положения в пространстве, окажется в частном положении;

во-вторых, перемещением в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве.

Первый путь лежит в основе способа замены плоскостей проекций, второй - способа вращения вокруг проецирующих осей.

Существуют и другие способы преобразования.

Вообще, всякое построение на комплексном чертеже, отображающее определённые построения в пространстве, и приводящее к образованию новых полей проекций, называется преобразованием комплексного чертежа.

Рассмотрим два основных способа преобразования комплексного чертежа.

Способ замены плоскостей проекций

Сущность способа состоит в том, что одна из плоскостей проекций (П1 или П2) (рис. 4-31) заменяется новой плоскостью проекций так, чтобы геометрическая фигура, занимая общее положение в системе плоскостей проекций П1 – П2, в новой системе плоскостей проекций (например, П1 – П4), оказалась бы в частном положении (т.е. меняем П2 на П4). При этом не должен нарушаться принцип метода Монжа, то есть новая плоскость проекций, например, П4, должна быть перпендикулярна остающейся плоскости проекций П1.

Рис. 4-31

При построении проекции геометрической фигуры на новую плоскость проекций П4 расстояние от фигуры до остающейся плоскости проекций П1 сохраняется неизменным.

Рассмотрим построение точки на новую плоскость проекций:

В системе П1 – П2 задана точка А (рис. 4-32). Ввести новую плоскость проекций П4 взамен П2 , и построить проекцию точки А на П4.

Пространственная модель

Рис. 4-32

Алгоритм:

1. Имеем систему плоскостей проекций П1 – П2 - база отсчёта х12.

2. Меняем П2 на П4; П4 ^ П1. В системе П1 – П4 база отсчёта х14. Проводим АА4 ^ П4; но П4 ^ П1, следовательно АА4 || П1, значит АА4 = А12 и А12 ^ х14; тогда А42 || А1А и 2А4 = 1А2.

3. Далее, используя метод Монжа, поворачиваем П4 вправо до совмещения её с П1. Получаем П4(совм.). Точка А4 займёт положение А4(совм). Расстояние 2А4 = 2А4(совм.).

Решение позиционных и метрических задач