Начертательная геометрия

Взаимная параллельность плоскостей

Построение двух взаимно параллельных плоскостей основано на известном положении, что две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости.

Задача: Через точку К(К1К2) (рис. 2-31.а) провести плоскость D, параллельную плоскости Г(АВС). Плоскость D задать пересекающимися прямыми.

Рис. 2-30

Алгоритм:

1. Плоскость D зададим прямыми m Ç n = K (рис. 2-31).

2. Прямую m возьмём параллельно стороне СВ треугольника. Если m || СВ, то m1 || C1B1, a m2 || C2B2

3. Прямую n возьмём параллельно стороне АВ треугольника. Если n || AB, mo n1 || A1B1, a n2 || A2B2.

4. Таким образом, плоскости S(АВС) и D(m Ç n) параллельны.

Рис. 2-31

Как вы думаете?

1. Сколько решений может иметь задача, представленная на рис. 2-30?

2. Чем можно ещё задать плоскость D, кроме решения, приведённого на рис. 2-31?

3. Сколько ответов может быть у задачи, представленной на рис. 2-29? Почему?

Выводы:

1. В общем случае плоскость определяют три точки.

2. Общий признак плоскостей частного положения - одна из проекций вырождается в прямую линию.

3. Точку в плоскости находят по принадлежности какой-нибудь прямой этой плоскости.

4. В любой плоскости можно построить прямые уровня и линии наибольшего наклона плоскости к каждой из плоскостей проекций.

5. Через точку, лежащую вне плоскости, можно провести сколько угодно прямых, параллельных данной плоскости, но только одну плоскость, параллельную заданной.

Решение позиционных и метрических задач