Начертательная геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Прямоугольная диметрия.

    Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П¢ так, чтобы показатели искажения по осям X' и Z' приняли равное значение, а по оси Y'- вдвое меньшее. Показатели искажения "kx" и "kz" будут равны 0,94, а "ky"- 0,47.

    На практике пользуются приведенными показателями, т.е. по осям X' и Z' откладывают натуральные размеры, а по оси Y'- в 2 раза меньше натуральных.

    Ось Z' обычно располагают вертикально, ось X'- под углом 7°10¢ к горизонтальной линии, а ось Y'-под углом 41°25¢ к этой же линии (рис.12.17).

    Рис. 12.17

    1. Строится вторичная проекция усеченной пирамиды.

    2. Строятся высоты точек 1,2,3 и 4.

    Рис. 10.18

    Проще всего строить ось Х¢, отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

    Чтобы построить ось Y' под углом 41°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

    На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А и С Î х, В и D Î y). Сколько координат имеют точки 1 и ? Две. Какие? Х и Z.

    Эти координаты откладываются в натуральную величину. Полученные точки 1¢ и 3¢ соединяются с точками А¢ и С¢ .

    Точки 2 и 4 имеют две координаты Z и Y. Так как высота у них одинаковая, то координата Z откладывается на оси Z'. Через полученную точку 0¢ проводится линия, параллельная оси Y, на которой по обе стороны от точки  откладываются расстояние 0141 уменьшенное в два раза.

    Полученные точки 2¢ и 4¢ соединяются с точками В¢ и D'.

    . Построение окружностей в прямоугольной диметрии.

    Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов. Эллипсы, расположенные на плоскостях между осями Х' и Y',Y' и Z' в приведенной диметрии будут иметь большую ось, равную 1,06d, а малую - 0,35d, а в плоскости между осями X' и Z'- большую ось тоже 1,06d, а малую 0,95d (рис.10.19).

    Эллипсы заменяются четырехцентовыми овалами, как в изометрии.

    Рис.10.19

     

    Косоугольная диметрическая проекция (фронтальная)

    Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X' и Z' составят прямой угол, ось Y' обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z', так и влево.

    Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

    Рис. 10.20

    Рис.10.21

    Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

    Рис. 10.22

    .Наклонные сечения.

    При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

    При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

    Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

    Рис. 11.1

    Сначала строим проекции его на П1 и на П2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

    Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П4 , параллельная заданной секущей плоскости А-А, на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

    Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

    Построения выполняются в следующей последовательности (рис.11.2):

    1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А.

    2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

    3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

    Аналогично строится истинная величина сечения поверхности вращения - эллипс.

    Рис. 11.2

    Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3).

    Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

    Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

    Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

    Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

    Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

    Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

    Последовательность выполнения наклонного сечения:

    Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

    Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

    Строится сечение цилиндра - часть эллипса. Сначала строятся характерные точки, определяющие длину малой и большой оси (54, 24 -24 ) и точки, ограничивающие эллипс (14 -14 ), затем дополнительные точки (44 -44 и 34 -34 ).

    Строится сечение призматического отверстия.

    Наносится штриховка под углом 45° к основной надписи, если она не совпадает с линиями контура, а если совпадает, то угол штриховки может быть 30° или 60°. Плотность штриховки на сечении такая же, как на ортогональном чертеже.

    Рис.11.3

    Рис.11.4

    Наклонное сечение можно поворачивать. При этом обозначение сопровождается знаком . Также разрешается показать половину фигуры наклонного сечения, если она симметрична. Подобное расположение наклонного сечения показано на рис.13.4. Обозначения точек при построении наклонного сечения можно не ставить.

    На рис.11.5 дано наглядное изображение заданной фигуры с сечением плоскостью А-А.

    Рис. 11.5

    Контрольные вопросы

    1. Что называют видом?

    2. Как получают изображение предмета на плоскости?

    3.Какие названия присвоены видам на основных плоскостях проекций?

    4.Что называют главным видом?

    5.Что называют дополнительным видом?

    6. Что называют местным видом?

    7.Что называют разрезом?

    8. Какие обозначения и надписи установлены для разрезов?

    9. В чем отличие простых разрезов от сложных?

    10.Какая соблюдается условность при выполнении ломаных разрезов?

    11. Какой разрез называется местным?

    12. При каких условиях допускается совмещать половину вида и половину разреза?

    13. Что называют сечением?

    14. Как располагают сечения на чертежах?

    15. Что называют выносным элементом?

    16. Как упрощенно показывают на чертеже повторяющиеся элементы?

    17. Как условно сокращают на чертеже изображение предметов большой длины?

    18. Чем отличаются аксонометрические проекции от ортогональных?

    19. Каков принцип образования аксонометрических проекций?

    20. Какие установлены виды аксонометрических проекций?

    21. Каковы особенности изометрии?

    22. Каковы особенности диметрии?

    Решение позиционных и метрических задач