Решение типового варианта контрольной работы по математике Аналитическая геометрия

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

Сборник задач по аналитической геометрии

Системы линейных уравнений

Правило Крамера

Методом Крамера найти решение системы линейных алгебраических уравнений

Метод Гаусса (Карл Фридрих Гаусс (1777-1855) немецкий математик) В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Найти общее решение однородной системы линейных алгебраических уравнений   .

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОД ГАУССА (МЕТОД ПОСЛЕДОВАТЕЛЬНОГО ИСКЛЮЧЕНИЯ НЕИЗВЕСТНЫХ)

Элементарные преобразования матриц и систем линейных уравнений Прежде чем перейти к решению произвольных систем линейных уравнений, нам необходимо познакомиться с некоторыми сведениями, относящимися к теории матриц

Совместна ли заданная система или нет?

Система n линейных уравнений с n неизвестными Ограничимся сначала рассмотрением системы, у которой число уравнений равно числу неизвестных.

Система линейных уравнений с базисом.  Метод Жордана  –  Гаусса Систему линейных уравнений будем называть системой с базисом, если в каждом уравнении содержится неизвестное с коэффициентом, равным единице, отсутствующее во всех остальных уравнениях (т. е. входящее в них с коэффициентом, равным нулю) и называемое базисным неизвестным

Ранг матрицы В теории линейных систем важную роль играет понятие ранга матрицы. С помощью ранга матрицы, не решая систему, можно установить её совместность или несовместность, а в случае совместности определить количество решений. Рассмотрим произвольную (не обязательно квадратную) матрицу

Собственные значения и собственные векторы квадратной матрицы При рассмотрении ряда вопросов, связанных с приложениями матричного исчисления, для данной квадратной матрицы  бывает необходимым отыскивать ненулевые матрицы-столбцы , для которых умножение на матрицу  слева равносильно умножению на некоторое число 

Линейные действия над векторами (сложение, вычитание, умножение на число).

Скалярное произведение векторов

Даны координаты вершин пирамиды

Линейные операции над векторами. В физике, механике, химии встречаются величины, которые полностью характеризуются только число­вым значением (скаляром). Например, масса тела, концентрация раствора, давление газа, температура и т.д. Такие величины называются скалярными. Вместе с тем, для задания скорости, силы, ускорения необходимо задать не только их числовое значение, но и направление действия в пространстве. Такие величины называются векторными.

Сложение векторов.

Разложение вектора по базису

Система координат. Координаты вектора в ортонормированном базисе

Скалярное произведение векторов и его приложение Кроме операций сложения и умножения на число на множестве векторов определены еще несколько операций. Одна из них – скалярное произведение, позволяющее находить длины векторов и углы между векторами по координатам векторов.