Решение типового варианта контрольной работы по математике

Контрольная работа №1

Системы линейных уравнений.

Матрицы и действия с ними.

Определители и их основные свойства.

Методы решения систем линейных уравнений.

СПИСОК ЛИТЕРАТУРЫ

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учеб. для вузов.-5-е изд., стер. - М.: Физматлит, 2002. – 317 с.

Беклемишев Д. В. Курс линейной алгебры и аналитической геометрии:  - М.: Физматлит, 2003. – 303 с.

Клетеник Д. В. Сборник задач по аналитической геометрии: Учеб. пособие для втузов / ред. Ефимов Н. В. – 17-е изд., стер. – СПб: Профессия, 2001. – 199 с.

Бугров Я.С., Никольский С.М. Высшая математика: Учеб.для вузов: в 3т.-5-е изд., стер.-М.:Дрофа.- (Высшее образование. Современный учебник). т.1. Элементы линейной алгебры и аналитической геометрии.-2003.-284 с.

Данко П.Е. и др. Высшая математика в упражнениях и задачах (с решениями): в 2 ч./ Данко П.Е., Попов А.Г., Кожевникова Т.Я -6-е изд..-М.: ОНИКС 21 век, ч.1. -2002.-304 с.

Решение типового варианта контрольной работы.

Задача 1. Вычислить определитель .

Решение. Для вычисления определителя третьего порядка будем использовать известную формулу Саррюса (правило треугольников), которое может быть записано следующей формулой:

Ответ: 0.

Задача 2. Решить систему методом Гаусса, матричным способом и используя правило Крамера.

Решение:

Решим систему матричным способом, для этого вычислим обратную матрицу , где  - алгебраические дополнения к элементам матрицы.

 - матрица невырожденная.



Решим систему методом Крамера. Главный определитель системы:

. Разложим определитель по элементам первой строки, пользуясь формулой .

Запишем и вычислим вспомогательные определители

Тогда

Ответ:

Решим систему методом Гаусса, для этого составим расширенную матрицу системы и упростим ее приведением к треугольному виду.

~ ~ ~

Таким образом, система равносильна системе

Находим

 

 

Ответ: , ,

При решении всеми методами одной и той же системы, мы получим один ответ.

Математика