Контрольная работа Предел функции

Аналитическая геометрия
  • Системы линейных уравнений
  • Правило Крамера
  • Метод Крамера
  • Метод Гаусса
  • Решение однородной системы линейных алгебраических уравнений .
  • Элементарные преобразования  матриц
  • Система n линейных  уравнений с n неизвестными
  • Система линейных  уравнений с базисом
  • Ранг матрицы
  • Собственные значения  и собственные векторы квадратной матрицы
  • Линейные действия над векторами
  • Скалярное произведение векторов
  • Даны координаты вершин пирамиды
  • Линейные операции над векторами.
  • Сложение векторов.
  • Разложение вектора по базису
  • Система координат
  • Скалярное произведение векторов и его приложение
  • Векторная алгебра
  • Решение типовых примеров
  • Векторное произведение векторов, его свойства
  • Преобразование алгебраических выражений
  • Комплексные числа
  • Комплексные числа в тригонометрической форме
  • Составить квадратное уравнение
  • Прямоугольная декартова система координат
  • Скалярное произведение векторов
  • Применение методов векторной алгебры для решения геометрических задач
  • Комбинаторика (комбинаторный анализ)
  • Бином Ньютона
  • Примеры вычисления интегралов
  • Неопределенный интеграл
  • Интегрирование некоторых иррациональных функций
  • Найти и изобразить область определения функций
  • Найти дифференциалы 1-го, 2-го и 3-го порядков
  • Вычислить повторный интеграл .
  • Вычислить двойной интеграл
  • Вычислить тройной интеграл 
  • Способы задания функции
  • Предел функции на бесконечности
  • Первый замечательный предел
  • Непрерывность функции в точке и на промежутке
  • Исходя из определения найти производную функции
  • Примеры вывода производных некоторых элементарных функций
  • Дифференцирование функции, заданной неявно
  • Теорема Ролля
  • Асимптоты плоской кривой
  • Наибольшее и наименьшее значения функции на отрезке
  • Таблица основных неопределённых интегралов
  • Непосредственное интегрирование
  • Интегрирование по частям
  • Интегрирование рациональных дробей
  • Интегрирование простых дробей
  • Интегрирование тригонометрических выражений
  • Интегрирование некоторых видов иррациональных выражений
  • ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ
  • Вычисление определенного интеграла
  • Методы интегрирования определённого интеграла
  • Вычисление площадей плоских фигур в прямоугольной системе координат
  • НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
  • Пределы
  • Предел последовательности
  • Пример. Найти предел 
  • Задачи, связанные с применением теоремы Вейерштрасса
  • Вычислить предел функции
  • Задачи, связанные с применением второго замечательного предела
  • Вычислить предел числовой последовательности
  • Бесконечно малые и бесконечно большие функции
  • Эквивалентные бесконечно малые функции
  • Односторонние пределы.
  • Свойства функций, непрерывных в точке
  • Исследовать функцию на непрерывность
  • Найти производную функции
  • Найти асимптоты и построить график функции
  • Векторная функция скалярного аргумента
  • Составить уравнения касательной
  • Методами дифференциального исчисления исследовать функцию
  • Найти неопределенный интеграл
  • Интегрирование рациональных функций
  • Интегрирование некоторых тригонометрических функций
  • Определенный интеграл
  •  

    НЕПРЕРЫВНОСТЬ ФУНКЦИИ

    Непрерывность функции в точке и на промежутке

    Определение 1. Функция f(x) называется непрерывной в точке x0ÎD(f), если она определена в некоторой окрестности точки x0 и предел f(x) в точке x0 равен значению функции в этой точке, т.е.

    .

    Замечание. Из определения 1 следует правило вычисления предела функции в точке её непрерывности:

    т.е. предел функции в точке её непрерывности равен значению функции в этой точке.

    Определение 2. Функция f(x) называется непрерывной в точке x0ÎD(f), если она определена в некоторой окрестности этой точки и бесконечно малому приращению аргумента  соответствует бесконечно малое приращение функции , т.е. .

    Определение 3. Функция f(x) называется непрерывной в точке x0ÎD(f), если она определена в некоторой окрестности этой точки и существует правый и левый предел f(x) в точке, причём они равны между собой и равны значению функции в этой точке, т.е.

    а) ;

    б) ;

    в) .

    Определение 4. Функция f(x) называется непрерывной на промежутке, если она непрерывна в каждой точке этого промежутка.

    Теоремы о непрерывных функциях

    Теорема 8. Если функции f(x) и g(x) непрерывны в точке x0 , то функции с×f(x) (c=const), f(x) ± g(x), f(x)×g(x) и  (если g(x) ¹ 0) также непрерывны в точке x0.

    Теорема 9. Если функция u = u(x) непрерывна в точке x0 и функция y = f(u) непрерывна в точке u0 = u(x0), то сложная функция y = f(u(x)) непрерывна в точке x0.

    Теорема 10. Все элементарные функции непрерывны в каждой точке области их определения.

    Точки разрыва функции и их классификация

    Определение 5. Точка x0 называется точкой разрыва функции f(x), если в этой точке функция либо не определена, либо определена, но нарушено хотя бы одно из условий определения 3 непрерывности f(x).

    Определение 6. Точка x0 называется точкой устранимого разрыва функции f(x), если предел функции в этой точке существует, но f(x) в точке x0 либо не определена, либо имеет значение f(x0), не совпадающее с найденным пределом:

    f(x0 – 0) = f(x0 + 0) ¹ f(x0).

    Определение 7. Точка x0 называется точкой разрыва первого рода функции f(x) (разрыв типа «скачка»), если в этой точке функция имеет конечные, но не равные между собой правый и левый пределы, т.е.

    f(x0 – 0) ¹ f(x0 + 0).

    Определение 8. Точка x0 называется точкой разрыва второго рода функции f(x), если в этой точке функция не имеет хотя бы одного из односторонних пределов или хотя бы один из односторонних пределов бесконечен.

    Примеры. Исследовать функции на непрерывность и точки разрыва.

    1.

    Решение. На промежутке (–∞; –1) , на промежутке (–1;1) и на промежутке (1;+∞) .

    На этих промежутках элементарная функция f(x) непрерывна при всех x, принадлежащих этим промежуткам. Необходимо проверить непрерывность в точках x = –1 и x = 1.

    2)

    Получили, что f(–1–0) ¹ f(–1+0) => x = –1 – точка разрыва функции f(x) I рода.

    3)

    4)

    Получили, что f(1 – 0) = f(1 + 0) = f(1) = 0 => x = 1 – точка непрерывности функции f(x).

    Ответ: f(x) непрерывна на промежутках (–∞;–1) и на (–1;+∞), точка x = –1 – точка разрыва функции f(x) I рода.

    2. f(x) =

    Решение. На промежутках (–∞;0) и на (0;+∞) функция f(x) непрерывна. Исследуем точку x = 0 Ï D(f).

      x = 0 – точка разрыва функции f(x) II рода.

    Решение типового варианта контрольной работы по математике