Контрольная работа ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Аналитическая геометрия
  • Системы линейных уравнений
  • Правило Крамера
  • Метод Крамера
  • Метод Гаусса
  • Решение однородной системы линейных алгебраических уравнений .
  • Элементарные преобразования  матриц
  • Система n линейных  уравнений с n неизвестными
  • Система линейных  уравнений с базисом
  • Ранг матрицы
  • Собственные значения  и собственные векторы квадратной матрицы
  • Линейные действия над векторами
  • Скалярное произведение векторов
  • Даны координаты вершин пирамиды
  • Линейные операции над векторами.
  • Сложение векторов.
  • Разложение вектора по базису
  • Система координат
  • Скалярное произведение векторов и его приложение
  • Векторная алгебра
  • Решение типовых примеров
  • Векторное произведение векторов, его свойства
  • Преобразование алгебраических выражений
  • Комплексные числа
  • Комплексные числа в тригонометрической форме
  • Составить квадратное уравнение
  • Прямоугольная декартова система координат
  • Скалярное произведение векторов
  • Применение методов векторной алгебры для решения геометрических задач
  • Комбинаторика (комбинаторный анализ)
  • Бином Ньютона
  • Примеры вычисления интегралов
  • Неопределенный интеграл
  • Интегрирование некоторых иррациональных функций
  • Найти и изобразить область определения функций
  • Найти дифференциалы 1-го, 2-го и 3-го порядков
  • Вычислить повторный интеграл .
  • Вычислить двойной интеграл
  • Вычислить тройной интеграл 
  • Способы задания функции
  • Предел функции на бесконечности
  • Первый замечательный предел
  • Непрерывность функции в точке и на промежутке
  • Исходя из определения найти производную функции
  • Примеры вывода производных некоторых элементарных функций
  • Дифференцирование функции, заданной неявно
  • Теорема Ролля
  • Асимптоты плоской кривой
  • Наибольшее и наименьшее значения функции на отрезке
  • Таблица основных неопределённых интегралов
  • Непосредственное интегрирование
  • Интегрирование по частям
  • Интегрирование рациональных дробей
  • Интегрирование простых дробей
  • Интегрирование тригонометрических выражений
  • Интегрирование некоторых видов иррациональных выражений
  • ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ
  • Вычисление определенного интеграла
  • Методы интегрирования определённого интеграла
  • Вычисление площадей плоских фигур в прямоугольной системе координат
  • НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
  • Пределы
  • Предел последовательности
  • Пример. Найти предел 
  • Задачи, связанные с применением теоремы Вейерштрасса
  • Вычислить предел функции
  • Задачи, связанные с применением второго замечательного предела
  • Вычислить предел числовой последовательности
  • Бесконечно малые и бесконечно большие функции
  • Эквивалентные бесконечно малые функции
  • Односторонние пределы.
  • Свойства функций, непрерывных в точке
  • Исследовать функцию на непрерывность
  • Найти производную функции
  • Найти асимптоты и построить график функции
  • Векторная функция скалярного аргумента
  • Составить уравнения касательной
  • Методами дифференциального исчисления исследовать функцию
  • Найти неопределенный интеграл
  • Интегрирование рациональных функций
  • Интегрирование некоторых тригонометрических функций
  • Определенный интеграл
  •  

    Дифференциал функции

    Пусть функция y = f(x) дифференцируема в точке x, тогда её приращение можно записать в виде двух слагаемых, первое из которых линейно относительно Dx, а второе слагаемое – бесконечно малая величина при Dx ® 0 (более высокого порядка малости по сравнению с Dx):

    ,

    где (Dx) ® 0 при Dx ® 0.

    Определение 4. Слагаемое  называется главной линейной относительно Dx частью приращения функции y = f(x), называемой дифференциалом этой функции. Дифференциал обозначается

    dy = y' (x)× Dx .

    Если x – независимая переменная, то справедливо равенство Dx = dx, так как (x)' = 1. Тогда формула для дифференциала записывается:

    dy = y' (x)× dx .

    Так как второе слагаемое приращения функция – малая величина более высокого порядка малости по сравнению с Dx, то между приращением функции и её дифференциалом можно приближённо поставить знак равенства. Это равенство тем точнее, чем меньше Dx. На основе этого приближённого равенства получается приближённое представление значения дифференцируемой функции:

    Пример. Вычислить приближённо

    Решение. Рассмотрим функцию . В качестве начальной точки

    возьмём x0 = 4, приращение Dx = 0,08,   и подставим в формулу:

    ,

      где D << 0,08.

    Геометрический смысл дифференциала

    Рассмотрим график дифференцируемой функции y = f(x) в некоторой окрестности точки x0 (рис. 6):

    Рис. 6

    Из DM0AN

    AN = M0A×tg a = Dx×f '(x0) = dy.

    Итак: дифференциал функции y = f(x) в точке x0 равен приращению ординаты касательной (AN), проведённой к кривой y = f(x) в точке (x0; f(x0)), при переходе от x0 к  x0+Dx (от точки М0 в точку М).

    Инвариантность формы дифференциала

    Теорема 14. Пусть функция y = f(u) дифференцируема в точке u, а функция u = u(x) дифференцируема в соответствующей точке x (u = u(x)). Тогда для сложной функции y = f(u(x)) справедливо равенство:

    dy = f '(u)du = y'(x)dx.

    Доказательство. Сложная функция y=f(u(x)) является дифференцируемой в точке x. Поэтому справедливо равенство:

    dy = y'(x)dx .

    Но так как функция y(x) = f(u(x)) сложная, то

    y' (x) = f ' (u) × u' (x).

    Поэтому dy = y'(x)dx = f '(u)×u'(x)dx = f '(u)×du, так как по условию теоремы функция u = u(x) дифференцируема в точке x, следовательно,

    du = u' (x)×dx.

    Теорема доказана.

     Производные и дифференциалы высших порядков

    Если функция y = f(x) дифференцируема на некотором промежутке, то она имеет на этом промежутке производную y' = f ' (x), которая в свою очередь может иметь производную: (y')' = (f '(x))' = y'', называемую второй производной функции y = f(x). Она обозначается:

    Может случиться, что новая функция y''(x) имеет производную, тогда она называется третьей производной функции y = f(x) и обозначается:

     

    Производная “n”-го порядка функции y = f(x) обозначается:

    Дифференциалом второго порядка функции y = f(x) в точке x называется выражение, обозначаемое d2y и вычисляемое по формуле:

    ,

    если x – независимая переменная.

    Дифференциал третьего порядка функции y = f(x):

    ,

    если x – независимая переменная, и т.д.

    Замечание. Дифференциал уже второго порядка не обладает свойством инвариантности формы.

    Решение типового варианта контрольной работы по математике