Контрольная работа ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Аналитическая геометрия
  • Системы линейных уравнений
  • Правило Крамера
  • Метод Крамера
  • Метод Гаусса
  • Решение однородной системы линейных алгебраических уравнений .
  • Элементарные преобразования  матриц
  • Система n линейных  уравнений с n неизвестными
  • Система линейных  уравнений с базисом
  • Ранг матрицы
  • Собственные значения  и собственные векторы квадратной матрицы
  • Линейные действия над векторами
  • Скалярное произведение векторов
  • Даны координаты вершин пирамиды
  • Линейные операции над векторами.
  • Сложение векторов.
  • Разложение вектора по базису
  • Система координат
  • Скалярное произведение векторов и его приложение
  • Векторная алгебра
  • Решение типовых примеров
  • Векторное произведение векторов, его свойства
  • Преобразование алгебраических выражений
  • Комплексные числа
  • Комплексные числа в тригонометрической форме
  • Составить квадратное уравнение
  • Прямоугольная декартова система координат
  • Скалярное произведение векторов
  • Применение методов векторной алгебры для решения геометрических задач
  • Комбинаторика (комбинаторный анализ)
  • Бином Ньютона
  • Примеры вычисления интегралов
  • Неопределенный интеграл
  • Интегрирование некоторых иррациональных функций
  • Найти и изобразить область определения функций
  • Найти дифференциалы 1-го, 2-го и 3-го порядков
  • Вычислить повторный интеграл .
  • Вычислить двойной интеграл
  • Вычислить тройной интеграл 
  • Способы задания функции
  • Предел функции на бесконечности
  • Первый замечательный предел
  • Непрерывность функции в точке и на промежутке
  • Исходя из определения найти производную функции
  • Примеры вывода производных некоторых элементарных функций
  • Дифференцирование функции, заданной неявно
  • Теорема Ролля
  • Асимптоты плоской кривой
  • Наибольшее и наименьшее значения функции на отрезке
  • Таблица основных неопределённых интегралов
  • Непосредственное интегрирование
  • Интегрирование по частям
  • Интегрирование рациональных дробей
  • Интегрирование простых дробей
  • Интегрирование тригонометрических выражений
  • Интегрирование некоторых видов иррациональных выражений
  • ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ
  • Вычисление определенного интеграла
  • Методы интегрирования определённого интеграла
  • Вычисление площадей плоских фигур в прямоугольной системе координат
  • НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
  • Пределы
  • Предел последовательности
  • Пример. Найти предел 
  • Задачи, связанные с применением теоремы Вейерштрасса
  • Вычислить предел функции
  • Задачи, связанные с применением второго замечательного предела
  • Вычислить предел числовой последовательности
  • Бесконечно малые и бесконечно большие функции
  • Эквивалентные бесконечно малые функции
  • Односторонние пределы.
  • Свойства функций, непрерывных в точке
  • Исследовать функцию на непрерывность
  • Найти производную функции
  • Найти асимптоты и построить график функции
  • Векторная функция скалярного аргумента
  • Составить уравнения касательной
  • Методами дифференциального исчисления исследовать функцию
  • Найти неопределенный интеграл
  • Интегрирование рациональных функций
  • Интегрирование некоторых тригонометрических функций
  • Определенный интеграл
  •  

    НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

    Первообразная функция и её свойства

    Определение 1. Функция  F(x) называется первообразной для функции f(x) на некотором промежутке, если в каждой точке этого промежутка функция F(x) дифференцируема и выполняется равенство F '(x) = f(x).

    Пример 1. Функция F (x) = sin x является первообразной функции f(x) = cos x на бесконечном промежутке (– ¥; +¥), так как

    F’(x) = (sin x) ' = cos x = f(x) для x Î (– ¥;+¥).

    Нетрудно убедиться, что функции F1(x) = sin x + 5 и F2(x) = sin x – 10 также являются первообразными функции f(x) = cos x для всех (– ¥;+¥), т.е. если для функции f(x) на некотором промежутке существует первообразная функции, то она не является единственной. Докажем, что множество всех первообразных для данной функции f(x) есть множество, которое задаётся формулой F(x) + C, где C – любая постоянная величина.

    Теорема 1 (об общем виде первообразной). Пусть F(x) – одна из первообразных для функции f(x) на интервале (a;b). Тогда любая другая первообразная для функции f(x) на интервале (a;b) представлена в виде F(x) + C, где C – некоторое число.

    Доказательство. Во-первых, проверим, что F(x) + C также является первообразной для функции f(x) на интервале (a;b).

    По условию теоремы F(x) на интервале (a;b) является первообразной для функции f(x), поэтому выполняется равенство:

    F '(x) = f(x) при любом xÎ (a;b).

    Так как С – некоторое число, то

    (F(x) + С) ' = F '(x)+С ' = F '(x) + 0 = f(x).

    Отсюда следует: (F(x) + С)' = f(x) при любом xΠ(a;b), а значит F(x) + С на интервале (a;b) является первообразной для функции f(x).

    Во-вторых, проверим, что если F(x) и Ф(x) – две первообразные для функции f(x) на интервале (a;b), то они различаются между собой на постоянную величину, т.е. F(x) – Ф(x) = const.

    Обозначим j(x) = F(x) – Ф(x). Так как по предположению функции F(x) и Ф(x) первообразные на интервале (a;b) для функции f(x), то выполняются равенства: F '(x) = f(x) и Ф'(x) = f(x) при любом xÎ (a;b). Следовательно, j'(x) = F '(x) – Ф' (x) = f(x) – f(x) = 0 при любом xÎ (a;b).

    Функция j(x) непрерывна и дифференцируема при xÎ (a;b). Значит, на любом отрезке [x1; x2] Ì (a; b) функция j(x) удовлетворяет теореме Лагранжа: существует точка Î(x1; x2), для которой выполняется равенство:

    j(x2) – j(x1) = j' ()× (x2 – x1) = 0×(x2 – x1) = 0

    Þ j(x2) – j(x1) = 0 Þ j(x2) = j(x1) Þ j(x) = const.

    Значит, F(x) – Ф(x) = const.

    Итак, получили, что если известна одна первообразная F(x) для функции f(x) на интервале (a;b), то любая другая первообразная может быть представлена в виде F(x) + С, где С – произвольная постоянная величина. Такая форма записи первообразных носит название общего вида первообразной.

    Понятие неопределённого интеграла

    Определение 2. Множество всех первообразных для данной функции f(x) на интервале (a;b) называется неопределённым интегралом функции f(x) на этом интервале и обозначается символом:

    В обозначении  знак называется знаком интеграла,  – подынтегральным выражением,  – подынтегральной функцией,  – переменной интегрирования.

    Теорема 2. Если функция f(x) непрерывна на промежутке (a;b), то она имеет на промежутке (a;b) первообразную и неопределённый интеграл.

    Замечание. Операция нахождения неопределённого интеграла от данной функции f(x) на некотором промежутке носит название интегрирования функции f(x).

    Свойства неопределённого интеграла

    Из определений первообразной F(x) и неопределённого интеграла от данной функции f(x) на некотором промежутке следуют свойства неопределённого интеграла:

    .

    .

    , где С – произвольная постоянная.

    , где k = const.

    Замечание. Все вышеперечисленные свойства верны при условии, что интегралы, фигурирующие в них, рассматриваются на одном и том же промежутке и существуют.

    Таблица основных неопределённых интегралов

    Действие интегрирования является обратным действию дифференцирования, т.е. по заданной производной функции f(x) надо восстановить начальную функцию F(x). Тогда из определения 2 и таблицы производных (см. §4, п. 3, с. 24) получается таблица основных интегралов.

    1. .

    2. .

    3. .

    4..

    5. .

    6. .

    7. .

    8. .

    9. .

    10. .

    11. .

    12. .

    13. .

    14. .

    15..

    16..

    В формулах 1-16 С – произвольная постоянная.

    Замечание. Интеграл, взятый не от любой элементарной функции, является элементарной функцией. Примерами могут служить следующие интегралы, часто встречающиеся в задачах:

      – интеграл Пуассона,

      – интегралы Френеля,

      – интегральный логарифм,

       – интегральный косинус и синус.

    Указанные функции существуют и имеют важное прикладное значение. Для этих функций составлены таблицы значений.

    Решение типового варианта контрольной работы по математике