Методы расчета электрической цепи переменного тока

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

Модуляция

Синусоидальные колебания характеризуются тремя основными параметрами: амплитудой, частотой и начальной фазой. В случае, когда один из этих параметров медленно меняется во времени по некоторому периодическому закону, то говорят об амплитудной, частотной или фазовой модуляции. Рассмотрим данное явление на примере амплитудной модуляции, которая может быть представлена функцией вида

f(t) = Am(t)sinωоt,

где Am(t) – меняется по некоторому периодическому закону.

f(t) = Aоm(1 + mcosΩt)sinωоt; ωо >> Ω

ωо – несущая частота;

Ω – модулирующая частота;

m < 1 – коэффициент(глубина) модуляции. Он показывает отклонение амплитуды модулирующего колебания от некоторого среднего значения.

f(t) = Aоmsinωоt + Aоmmcos(Ωt)sinωоt;.

f(t) = Aоmsinωоt + 0,5Aоmm·[sin(ωо – Ω)t + sin(ωо+Ω)t].

В результате модулированные по амплитуде колебания являются суммой трех колебательных составляющих. Одно происходит с несущей частотой ωо. Два других – с боковыми частотами (ωо – Ω ) и (ωо + Ω ). Сказанное позволяет построить результирующую функцию, приведенную на рис. 7.5.

 

Рис.7.5. График модулированных по амплитуде колебаний

Этот вид модуляции далеко не лучший, поскольку он в наибольшей степени подвержен помехам. Для повышения помехоустойчивости используются комбинированные методы модуляции.

Резонансные явления в цепях с несинусоидальными источниками

Рассматривая однофазные синусоидальные цепи, мы познакомились с явлением резонанса. Указанные явления имеют место в цепях и с несинусоидальными источниками, однако, в этом случае они имеют определенную специфику, связанную с тем обстоятельством, что резонанс может возникнуть как на основной, так и на высших гармониках.

Для последовательного контура в цепях с несинусоидальным источником условие резонанса будет задано соотношением

  ,

где ω - частота основной гармоники; k – номер гармоники.

На рис. 7.6 приведена зависимость, иллюстрирующая данное явление.

Рис.7.6. Зависимость тока от индуктивности

.

Методика расчета цепей с несинусоидальными источниками

1. Заданную несинусоидальную функцию, питающую цепь, раскладывают в ряд Фурье и ограничиваются при этом тремя - четырьмя членами ряда, включая постоянную составляющую, если она есть.

2. Любым из известных методов расчета сложных электрических цепей производится расчет токов и напряжений заданной цепи. При этом используется комплексный метод расчета. Эта процедура выполняется для всех гармоник ряда, включая и постоянную составляющую, которая эквивалентна цепи с постоянным током.

Комплексное решение, полученное на каждой из гармоник складывать нельзя, с целью получения обобщенного решения задачи. Эту процедуру мешает выполнить то обстоятельство, что соответствующие полученным решениям векторы будут вращаться с различными угловыми частотами. Поэтому полученные комплексные решения должны быть переведены в реальные функции времени и лишь затем просуммированы, основываясь на принципе наложения.

Сказанное проиллюстрируем примером по рис. 7.7.

 

  a) b)

Рис.7.7. Форма подаваемого напряжения (a)
и схема исследуемой цепи (b)

Uвх = 100В - действующее значение (для первой гармоники), XL = 25 Ом, XC = 100 Ом, R = 50 Ом.

Определить действующее напряжение на выходе, ограничиваясь первыми тремя членами ряда, на который можно разложить функцию uвх(ωt).

Используя известное разложение, получим

;

;

.

Для определения функции выходного напряжения составим передаточную функцию исходной цепи, которая связывает входное и выходное напряжения и является частотно-зависимой:

  ; ; ;

; ; ;

.

При k = 0 .

При k = 2 .

Полученный результат показывает, что амплитуда выходного сигнала в точности равна амплитуде входного. Фаза выходного напряжения на этой же гармонике опережает фазу входного напряжения на 90°.

При k = 4 .

Используя полученный результат, трансформируем входной ряд напряжения и получим соответствующий ряд выходного напряжения в реальном времени.

;

.

В случае если на выходе появилась бы постоянная составляющая, то ее также необходимо учесть путем внесения под знак корня квадрата ее величины (делить на нельзя).

Характеристики и параметры реальных элементов электрических цепей постоянного тока