Локальные и глобальные компьютерные сети. Построение сети

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

Основные проблемы построения сетей Проблемы физической передачи данных по линиям связи Даже при рассмотрении простейшей сети, состоящей всего из двух машин, можно увидеть многие проблемы, присущие любой вычислительной сети, в том числе проблемы, связанные с физической передачей сигналов по линиям связи, без решения которой невозможен любой вид связи.

Проблемы объединения нескольких компьютеров До сих пор мы рассматривали вырожденную сеть, состоящую всего из двух машин. При объединении в сеть большего числа компьютеров возникает целый комплекс новых проблем. Топология физических связей При проектировании распределенной вычислительной сети в первую очередь необходимо выбрать способ организации физических связей, то есть топологию. Под топологией вычислительной сети понимается конфигурация графа, вершинам которого соответствуют компьютеры сети (иногда и другое оборудование, например концентраторы), а ребрам - физические связи между ними. Компьютеры, подключенные к сети, часто называют станциями или узлами сети.

Организация совместного использования линий связи Только в сети с полносвязной топологией для соединения каждой пары компютеров имеется отдельная линия связи. Во всех остальных случаях неизбежно возникает вопрос о том, как организовать совместное использование линий связи несколькими компьютерами сети. Как и всегда при разделении ресурсов, главной целью здесь является удешевление сети.

Адресация компьютеров Еще одной новой проблемой, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации. Требования, предъявляемые к адресу узла сети и схеме его назначения : Адрес должен уникально идентифицировать компьютер в сети любого масштаба.

Стандартные решения сетевых проблем Рассмотрим, каким образом описанные выше общие подходы к решению наиболее важных проблем построения сетей воплощены в существующих сетевых технологиях. Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети.

Физическая структуризация сети Простейшим коммуникационным устройством является - повторитель (repeator) - используется для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети. Повторитель передает сигналы, приходящие из одного сегмента сети, в другие ее сегменты . Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала - восстановления его мощности и амплитуды, улучшения фронтов и т.п.

Логическая структуризация сети Физическая структуризация сети полезна во многих отношениях, однако в ряде случаев, обычно относящихся к сетям большого и среднего размера, невозможно обойтись без логической структуризации сети. Наиболее важной проблемой, не решаемой путем физической структуризации, остается проблема перераспределения передаваемого трафика между различными физическими сегментами сети.

Модель взаимодействия открытых систем и проблемы стандартизации Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети - это соединение разного оборудования, а значит, проблема совместимости является одной из наиболее острых. Без принятия всеми производителями общепринятых правил построения оборудования прогресс в деле "строительства" сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стандартах - любая новая технология только тогда приобретает "законный" статус, когда ее содержание закрепляется в соответствующем стандарте.

Модель OSI Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно является стандартным. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

Уровни модели OSI Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, например, крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Транспортный уровень На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем.

Стандартные стеки коммуникационных протоколов Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру.

Требования, предъявляемые к современным вычислительным сетям Для классификации компьютерных сетей используются различные признаки, но чаще всего сети делят на типы по территориальному признаку, то есть по величине территории, которую покрывает сеть. И для этого есть веские причины, так как отличия технологий локальных и глобальных сетей очень значительны, несмотря на их постоянное сближение.

Надежность и безопасность Одной из первоначальных целей создания распределенных систем, к которым относятся и вычислительные сети, являлось достижение большей надежности по сравнению с отдельными вычислительными машинами. Важно различать несколько аспектов надежности. Для технических устройств используются такие показатели надежности, как среднее время наработки на отказ вероятность отказа, интенсивность отказов. Однако эти показатели пригодны для оценки надежности простых элементов и устройств, которые могут находиться только в двух состояниях - работоспособном или неработоспособном. Сложные системы, состоящие из многих элементов, кроме состояний работоспособности и неработоспособности, могут иметь и другие промежуточные состояния, которые эти характеристики не учитывают. В связи с этим для оценки надежности сложных систем применяется другой набор характеристик.

Поддержка разных видов трафика Это относится в основном к мультимедийному трафику. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного трафика. Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего

Линии связи Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок.

Аппаратура линий связи Аппаратура передачи данных (АПД или DCE - Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей (ISDN), оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная способность и достоверность - это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64 Кбит/с, 2 Мбит/с и т.п.

Амплитудно-частотная характеристика, полоса пропускания и затухание Степень искажения синусоидальных сигналов линиями связи оценивается с помощью таких характеристик, как амплитудно-частотная характеристика, полоса пропускания и затухание на определенной частоте.

Пропускная способность линии Пропускная способность (throughput) линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеряется в битах в секунду - бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т.д.

Связь между пропускной способностью линии и ее полосой пропускания Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако, с другой стороны, с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала, то есть разность между максимальной и минимальной частотами того набора синусоид, которые в сумме дадут выбранную для физического кодирования последовательность сигналов.

Стандарты кабелей Как ранее было сказано, распределенные вычислительные сети могут быть построены на различных физических каналах передачи данных: проводные сети, кабельные сети, построенные на коаксиальном кабеле, витой паре и оптоволокне; передача данных по радиоканалам различных диапазонов, инфракрасные сети. К настоящему наибольшее распространение получили и наибольшими темпами развиваются именно кабельные сети.

Основное внимание в современных стандартах уделяется кабелям на основе витой пары и волоконно-оптическим кабелям. Коаксиальные кабели Существует большое количество типов коаксиальных кабелей, используемых в сетях различного типа - телефонных, телевизионных и компьютерных. Ниже приводятся основные типы и характеристики этих кабелей.

Кабели на основе экранированной витой пары Экранированная витая пара STP хорошо защищает передаваемые сигналы от внешних помех, а также меньше излучает электромагнитных колебаний вовне, что защищает, в свою очередь, пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку, так как требует выполнения качественного заземления. Экранированный кабель применяется только для передачи данных, а голос по нему не передают.

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, например, канал тональной частоты, типичный представитель общественные телефонные сети. Типичная амплитудно-частотная характеристика канала тональной частоты представлена на рис. 38. Этот канал передает частоты в диапазоне от 300 до 3400 Гц, таким образом, его полоса пропускания равна 3100 Гц. Хотя человеческий голос имеет гораздо более широкий спектр - примерно от 100 Гц до 10 кГц, для приемлемого качества передачи речи диапазон в 3100 Гц является хорошим решением. Строгое ограничение полосы пропускания тонального канала связано с использованием аппаратуры уплотнения и коммутации каналов в телефонных сетях.

Спектр модулированного сигнала Спектр результирующего модулированного сигнала зависит от типа модуляции и скорости модуляции, то есть желаемой скорости передачи бит исходной информации. Рассмотрим сначала спектр сигнала при потенциальном кодировании. Пусть логическая единица кодируется положительным потенциалом, а логический ноль - отрицательным потенциалом такой же величины. Для упрощения вычислений предположим, что передается информация, состоящая из бесконечной последовательности чередующихся единиц и нулей, как это и показано на рис. 39, а. Заметим, что в данном случае величины бод и бит в секунду совпадают.