Адресация в IP-сетях Технология мобильных сетей Технология Ethernet Топология сети Электронная почта Поиск информации в Интернет

Локальные и глобальные компьютерные сети. Службы и адресация

Порядок распределения IP-адресов

Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно. Номера узлов и в том и в другом случае администратор волен назначать по своему усмотрению, не выходя, разумеется, из разрешенного для этого класса сети диапазона.

Координирующую роль в централизованном распределении IP-адресов до некоторого времени играла организация InterNIC, однако с ростом сети задача распределения адресов стала слишком сложной, и InterNIC делегировала часть своих функций другим организациям и крупным поставщикам услуг Internet.

Уже сравнительно давно наблюдается дефицит IP-адресов. Очень трудно получить адрес класса В и практически невозможно стать обладателем адреса класса А. При этом надо отметить, что дефицит обусловлен не только ростом сетей, но и тем, что имеющееся множество IP-адресов используется нерационально. Очень часто владельцы сети класса С расходуют лишь небольшую часть из имеющихся у них 254 адресов. Рассмотрим пример, когда две сети необходимо соединить глобальной связью. В таких случаях в качестве канала связи используют два маршрутизатора, соединенных по схеме “точка-точка” (рис. 13.6). Для вырожденной сети, образованной каналом, связывающим порты двух смежных маршрутизаторов, приходится выделять отдельный номер сети, хотя в этой сети имеются всего 2 узла.


Рис. 13.6. Нерациональное использование пространства IP-адресов

Если же некоторая IP-сеть создана для работы в “автономном режиме”, без связи с Internet, тогда администратор этой сети волен назначить ей произволы выбранный номер. Но и в этой ситуации для того, чтобы избежать каких-либо коллизий, в стандартах Internet определено несколько диапазонов адресов, рекомендуемых для локального использования. Эти адреса не обрабатываются маршрутизаторами Internet ни при каких условиях. Адреса, зарезервированные для локальных целей, выбраны из разных классов: в классе А - это сеть 10.0.0.0, в классе В - это диапазон из 16 номеров сетей 172.16.0.0-172.31.0.0, в классе С - это диапазон из 255 сетей - 192.168.0.0-192.168.255.0.

Для смягчения проблемы дефицита адресов разработчики стека TCP/IP предлагают разные подходы. Принципиальным решением является переход на нову версию IPv6, в которой резко расширяется адресное пространство за счет использования 16-байтных адресов. Однако и текущая версия IPv4 поддерживает некоторые технологии, направленные на более экономное расходование IP-адресов. Одно из таких технологий является технология масок и ее развитие - технология бесклассовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR). Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо. Благодаря CIDR поставщик услуг получает возможность “нарезать” блоки из выделенного ему адресного пространства в точном соответствии с требованиями каждого клиента, при этом у него остается пространство для маневра на случай его будущего роста.

Другая технология, которая может быть использована для снятия дефицита адресов, это трансляция адресов (Network Address Translator, NAT). Узлам внутренней сети адреса назначаются произвольно (естественно, в соответствии с общим правилами, определенными в стандарте), так, как будто эта сеть работает автономно. Внутренняя сеть соединяется с Internet через некоторое промежуточное устройство (маршрутизатор, межсетевой экран). Это промежуточное устройство получает в свое распоряжение некоторое количество внешних “нормальных” IP-адресов согласованных с поставщиком услуг или другой организацией, распределяющей IP-адреса. Промежуточное устройство способно преобразовывать внутренние адреса во внешние, используя для этого некие таблицы соответствия. Для внешних пользователей все многочисленные узлы внутренней сети выступают под несколькими внешними IP-адресами. При получении внешнего запроса это устройств анализирует его содержимое и при необходимости пересылает его во внутреннюю сеть, заменяя IP-адрес на внутренний адрес этого узла. Процедура трансляции адресов определена в RFC 1631.

Автоматизация процесса назначения IP-адресов

Назначение IP-адресов узлам сети даже при не очень большом размере сети может представлять для администратора утомительную процедуру. Протокол Dynamic Ноst Configuration Protocol (DHCP) освобождает администратора от этих проблем, автсматизируя процесс назначения IP-адресов.

DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом посылает в сеть широковещательный запрос на получение IP-адреса. DHCP-сервер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration), что дает возможность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимущество DHCP - автоматизация рутинной работы администратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиенту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сроком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра “продолжительность аренды”, которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от DHCP-сервера в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся DHCP-клиентом, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

DHCP-сервер может назначить клиенту не только IP-адрес клиента, но и другие параметры стека TCP/IP, необходимые для его эффективной работы, например, маску, IP-адрес маршрутизатора по умолчанию, IP-адрес сервера DNS, доменное имя компьютера и т. п.

Литература

1)Акулов О.А., Медведев Н.В. Информатика: базовый курс: учеб. для студентов вузов, бакалавров, магистров, обучающихся по направлениям 552800, 654600 «Информатика и вычисл. техника». – М.: Омега-Л, 2007. – 560 с.

2)Безручко В.Т. Информатика (курс лекций): учебное пособие. – М.: ИД «ФОРУМ»: ИНФРА-М, 2006. – 432 с.

3)Бородакий Ю.В., Лободинский Ю.Г. Информационные технологии. Методы, процессы, системы. – М.: Радио и связь, 2001. – 456 с.

4)Информатика: Базовый курс/С.В. Симонович и др. – СПб.: Питер, 2001.– 640с.

5)Информатика в схемах и таблицах/авт.-сост.И.Ю.Гусева.–СПб.:Тригон,2005.– 96 с.

6)Информатика для юристов и экономистов/С.В. Симонович и др. – СПб.: Питер, 2004.– 688 с.

7)Информатика и инфформационно-коммуникационные технологии. 10 класс. Базовый уровень/под ред. Н.В. Макаровой. – СПб.: Питер, 2006. – 238с.

8)Информатика: Практикум по технологии работы на компьютере/под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2005.– 256 с.

9)Информатика: Учебник/под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2007.– 768с.

10)Информационные технологии (для экономиста). Учеб. пособие/Под общ.ред. А.К. Волкова. – М.: ИНФРА-М, 2001. – 310 с.

11)Лесничая И.Г., Миссинг И.В., Романова Ю.Д., Шестаков В.И. Информатика и информационные технологии.Учебное пособие.–М.:Изд-во Эксмо, 2005.–544с.

12)Савицкая Н.И. Экономическая информатика:учеб. пособие – М.:Экономистъ, 2005. – 429 с.

13)Советов Б.Я., Цехановский В.В. Информационные технологии:Учеб. для вузов – М.: Высшая школа, 2005. – 263 с.

14)Практикум по информатике/под ред.А.А.Землянского.–М.:КолосС,2003.–384с.

15)Хохлова Н.М. Информационные технологии (конспект лекций). – М.: Приор-издат, 2006. – 192 с.

16)Угринович Н.Д. Информатика и информационные технологии. Учебник для 10–11 классов. – М.: БИНОМ. Лаборатория знаний, 2006. – 511 с.

17)Экономическая информатика / под ред. П.В. Конюховского и Д.Н. Колесова. – СПб.: Питер, 2001.– 560 с.

18)Экономическая информатика. Учебник для вузов./под ред. В.В. Евдокимова. – СПб.: Питер, 1997.– 592 с.


Локальные и глобальные компьютерные сети