Контрольная работы по математике Пределы

Аналитическая геометрия
  • Системы линейных уравнений
  • Правило Крамера
  • Метод Крамера
  • Метод Гаусса
  • Решение однородной системы линейных алгебраических уравнений .
  • Элементарные  преобразования матриц
  • Система  n линейных уравнений с n неизвестными
  • Система  линейных уравнений с базисом
  • Ранг матрицы
  • Собственные  значения и собственные векторы квадратной матрицы
  • Линейные действия над векторами
  • Скалярное произведение векторов
  • Даны координаты вершин пирамиды
  • Линейные операции над векторами.
  • Сложение векторов.
  • Разложение вектора по базису
  • Система координат
  • Скалярное произведение векторов и его приложение
  • Векторная алгебра
  • Решение типовых примеров
  • Векторное произведение векторов, его свойства
  • Преобразование алгебраических выражений
  • Комплексные числа
  • Комплексные числа в тригонометрической форме
  • Составить квадратное уравнение
  • Прямоугольная декартова система координат
  • Скалярное произведение векторов
  • Применение методов векторной алгебры для решения геометрических задач
  • Комбинаторика (комбинаторный анализ)
  • Бином Ньютона
  • Пределы
  • Предел последовательности
  • Пример. Найти предел 
  • Задачи, связанные с применением теоремы Вейерштрасса
  • Вычислить предел функции
  • Задачи, связанные с применением второго замечательного предела
  • Вычислить предел числовой последовательности
  • Бесконечно малые и бесконечно большие функции
  • Эквивалентные бесконечно малые функции
  • Односторонние пределы.
  • Свойства функций, непрерывных в точке
  • Исследовать функцию на непрерывность
  • Найти производную функции
  • Найти асимптоты и построить график функции
  • Векторная функция скалярного аргумента
  • Составить уравнения касательной
  • Методами дифференциального исчисления исследовать функцию
  • Найти неопределенный интеграл
  • Интегрирование рациональных функций
  • Интегрирование некоторых тригонометрических функций
  • Определенный интеграл
  •  

    Предел последовательности

    Определение. Число а называется пределом последовательности , если для любого  существует номер N такой, что при всех  n>N выполняется неравенство  

     (  뿷膞b활bᡭ뿷ᨷ腾   ).

    Пример 1. Доказать, что  (указать ).

    Решение. Неравенство  из определения предела последовательности, которое мы должны решить относительно n, принимает вид  Пусть . Тогда, откуда , следовательно, в качестве N можно взять . Здесь - целая часть числа , то есть наибольшее целое число, не превосходящее . Если, например, , то условиям задачи отвечают натуральные числа , то есть

    Пример 2. Доказать, что  (указать ).

     Решение. Неравенство  принимает вид ,  Последнее неравенство преобразуется в квадратное. Однако вычисления можно упростить. Неравенство будет выполняться, если справедливо следующее двойное неравенство:  Его левая часть заведомо выполняется при . Правая часть выполняется при . Следовательно, условиям задачи отвечают числа  Отсюда 

    При вычислении предела  в случае  и  (т.е. в случае неопределённости вида ) или в случае,   и т.д. нельзя сразу воспользоваться арифметическими свойствами предела. Следует так преобразовать выражение , чтобы можно было использовать свойства предела и раскрыть неопределённость, т.е. найти предел. Полезным для этого в случае  бывает вынести в числителе и знаменателе старшие степени за скобки или разделить числитель и знаменатель на старшую степень одного из них.

    Пример 3. Найти предел .

    Решение. Преобразуем исходное выражение, выполнив действия в числителе и знаменателе:

    . Разделив числитель и знаменатель на их старшую степень , получим . Поскольку  то по свойствам предела получаем

    Вообще предел отношения двух многочленов переменной  можно находить по правилу

       (1)

    так что в решении последнего примера можно было обойтись без деления на .

    При вычислении пределов используют формулу бинома Ньютона

      (2)

    Также следует знать формулу  ( «эн-факториал»- произведение натуральных чисел от 1 до n; например, ).

    частное ню фото группового секса.
    Контрольная работы по математике Пределы