Курс лекций по физике Примеры решения задач

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

Равновесная плотность энергии излучения

Рассмотрим излучение, находящееся в равновесии с веществом. Для этого представим себе эвакуированную полость, стенки которой поддерживаются при постоянной температуре Т. В равновесном состоянии энергия излучения будет распределена в объеме полости с определенной плотностью u = u(T). Спектральное распределение этой энергии можно охарактеризовать функцией u(ω,T), определяемой условием duω= u(ω,T) d, где duω — доля плотности энергии, приходящаяся на интервал частот dω. Полная плотность энергии u(T) связана с функцией u(ω,T) формулой (3.10.1).

Из термодинамических соображений следует, что равновесная плотность энергии излучения u(T) зависит только от температуры и не зависит от свойств стенок полости. Рассмотрим две полости, стенки которых изготовлены из разных материалов и имеют первоначально одинаковую температуру. Допустим, что равновесная плотность энергии в обеих полостях различна и, скажем, u1(T)>u2(T). Соединим полости с помощью небольшого отверстия (рис.3.10.5) и тем самым позволим стенкам полостей вступить в теплообмен через излучение. Так как по предположению u1>u2, поток энергии из первой полости во вторую должен быть больше, чем поток, текущий во встречном Рис.3.10.5

направлении. В результате стенки второй полости станут

поглощать больше энергии, чем излучать, и температура их начнет повышаться. Стенки же первой полости станут поглощать меньше энергии, чем излучать, так что они будут охлаждаться. Однако два тела с первоначально одинаковой температурой не могут вследствие теплообмена друг с другом приобрести различные температуры — это запрещено вторым началом термодинамики. Поэтому наше допущение о неодинаковости u1 и u2 должно быть признано неправомерным. Вывод о равенстве u1(T) и u2(T) распространяется на каждую спектральную составляющую u(ω, T).

Независимость равновесного излучения от природы стенок полости можно пояснить следующими соображениями. Абсолютно черные стенки поглощали бы всю упавшую на них энергию Фэ и испускали бы такой же поток энергии Фэ. Стенки с поглощательной способностью а поглотят долю aФэ упавшего на них потока Фэ и отразят поток, равный (1-a)Фэ. Кроме того, они излучат поток aФэ (равный поглощенному потоку). В итоге стенки полости вернут излучению такой же поток энергии Фэ = (1-a)Фэ + aФэ, какой возвращали бы излучению абсолютно черные стенки.

Равновесная плотность энергии излучения  u связана с энергетической светимостью абсолютно черного тела R* простым соотношением, которое мы сейчас выведем.

Рассмотрим эвакуированную полость с абсолютно черными стенками. В случае равновесия через каждую точку внутри полости будет проходить в любом направлении поток излучения одинаковой плотности. Если бы излучение распространялось Рис.3.10.6.

в одном заданном направлении (т. е. через данную точку проходил только один луч), плотность потока энергии в рассматриваемой точке была бы равна произведению плотности энергии u на скорость электромагнитной волны c. Однако через каждую точку проходит множество лучей, направления которых равномерно распределены в пределах телесного угла 4π. Поток энергии равномерно распределен в пределах этого телесного угла. Следовательно, в каждой точке в пределах телесного угла  будет течь поток энергии, плотность которого равна

Возьмем на поверхности полости элементарную площадку ΔS (рис.3.10.6). Эта площадка посылает в пределах телесного угла dΩ=sinυdυdφ в направлении, образующем с нормалью угол υ, поток энергии

По всем направлениям, заключенным в пределах телесного угла 2π, площадка ΔS посылает поток энергии

 (3.10.13)

Вместе с тем поток энергии, испускаемый площадкой, можно найти, умножив энергетическую светимость R* на ΔS: ΔФэ=R*ΔS.  Сравнение с (3.10.13) дает, что

 (3.10.14)

Равенство (3.10.14) должно выполняться для каждой спектральной составляющей излучения. Отсюда вытекает, что

 (3.10.15)

Эта формула связывает испускательную способность абсолютно черного тела с равновесной плотностью энергии теплового излучения.

Закон Стефана — Больцмана и закон Вина.

Теоретическое объяснение законов излучения абсолютно черного тела имело огромное значение в истории физики – оно привело к понятию квантов энергии.

Долгое время попытки получить теоретически вид функции f(ω, Т) не давали общего решения задачи. Стефан (1879), анализируя экспериментальные данные, пришел к выводу, что энергетическая светимость R любого тела пропорциональна четвертой степени абсолютной температуры. Однако последующие более точные измерения показали ошибочность его выводов. Больцман (1884), исходя из термодинамических соображений, получил теоретически для энергетической светимости абсолютно черного тела следующее значение:

 (3.10.16)

где σ – постоянная величина, Т – абсолютная температура. Таким образом, заключение, к которому Стефан пришел для нечерных тел (с абсолютно черными телами он не экспериментировал), оказалось справедливым лишь для абсолютно черных тел.

Соотношение (3.10.16) между энергетической светимостью абсолютно черного тела и его абсолютной температурой получило название закона Стефана – Больцмана. Константу σ называют постоянной Стефана – Больцмана. Ее экспериментальное значение равно 

Вин (1893), воспользовавшись, кроме термодинамики, электромагнитной теорией, показал, что функция спектрального распределения должна иметь вид

 (3.10.17)

где F — некоторая функция отношения частоты к температуре.

Согласно формуле (3.10.11) для функции φ(λ, Т) получается выражение

 (3.10.17)

где ψ(λ, Т) некоторая функция произведения λТ.

Соотношение (3.10.17) позволяет установить зависимость между длиной волны λm, на которую приходится максимум функции φ(λ, Т) и температурой. Продифференцируем это соотношение по λ:

 (3.10.18)

Выражение в квадратных скобках представляет собой некоторую функцию Ψ(λ, Т). При длине волны λm, соответствующей максимуму функции φ(λ, Т), выражение (3.10.18) должно обращаться в нуль:

Из опыта известно, что λm конечно (λm ≠ ∞). Поэтому должно выполняться условие: Ψ(λmТ) = 0. Решение последнего уравнения относительно неизвестного λmТ дает для этого неизвестного некоторое число, которое мы обозначим буквой b. Таким образом, получается соотношение

которое носит название закона смещения Вина: длина волны, на которую приходится максимум излучательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре

. (3.10.19) 

 Экспериментальное значение константы b равно

Формула Рэлея — Джинса.

Рэлей и Джинс сделали попытку определить равновесную плотность излучения u(ω, Т), исходя из теоремы классической статистики о равнораспределении энергии по степеням свободы. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия, равная двум половинкам kT – одна половинка на электрическую, вторая — на магнитную энергию волны (напомним, что по классическим представлениям на каждую колебательную степень свободы приходится в среднем энергия, равная двум половинкам kТ).

Равновесное излучение в полости представляет собой систему стоячих волн. С учетом возможных видов поляризации количество стоячих волн, отнесенное к единице объема полости, определяется формулой

 (3.10.20)

Как мы уже отмечали, Рэлей и Джинс, исходя из закона равнораспределения энергии по степеням свободы, приписали каждому колебанию энергию ‹ε›, равную kT. Умножив (3.10.20) на ‹ε›, получим плотность энергии, приходящуюся на интервал частот dω:

Отсюда

 (3.10.21)

Перейдя от u(ω, Т) к f(ω, Т), получим выражение для испускательной способности абсолютно черного тела:

 (3.10.22)

Выражения (3.10.21) и (3.10.22) называются формулой Рэлея — Джинса. Эта формула удовлетворительно согласуется с экспериментальными данными лишь при больших длинах волн и резко расходится с опытом для малых длин волн (см. рис.3.10.7, на котором сплошной линией изображена экспериментальная кривая, пунктиром кривая, построенная по формуле Рэлея — Джинса).

Интегрирование выражения (3.10.22) по ω в пределах от 0 до ∞ дает для равновесной плотности энергии u(Т) бесконечно большое значение. Этот результат, получивший название ультрафиолетовой катастрофы, также находится в противоречии с опытом. Равновесие между излучением и излучающим Рис.3.10.7.

телом устанавливается при конечных значениях u(Т).

 

 

 

Определить величину давления р при котором длина свободного пробега молекул хлора Cl2 составляет  = 0,1 м, если температура газа равна Т = 1000 К.

В закрытом сосуде азот N2 содержится при давлении 100 кПа и температуре 27 0С. определить длину свободного пробега молекул

Определить среднюю продолжительность <t> свободного пробега молекул кислорода при температуре T = 250 K и давлении р = 100 Па.

Оценить число молекул воздуха, соударяющихся в секунду со стеной вашей комнаты на её площади S = 1×10 ­ 4 м2.

Диффузия кислорода при температуре Т = 273 К равна D = 1,9×10 ­5 м2/с. Определить при заданных условиях длину свободного пробега молекул.

Во сколько раз изменится коэффициент диффузии молекул кислорода, находящихся в закрытом объёме, если количество молекул и температуру увеличить в четыре раза?

Установить зависимость коэффициента динамической вязкости h от давления р при изотермическом процессе.

Два горизонтальных диска радиусами R = 0,2 м расположены друг над другом так, что их оси совпадают. Расстояние между дисками d = 5×10 ­3 м. Верхний диск неподвижен, а нижний вращается с постоянной угловой скоростью w = 62,8 рад/с. Между дисками находится воздух с коэффициентом динамической вязкости h = 1,72×10 ­ 5 Па×с. Определить вращающий момент, приложенный к неподвижному диску.

В аэродинамической трубе продувается модель крыла самолёта со скоростью потока воздуха v = 200 м/с. Пограничный слой у крыла, где наиболее сильно проявляются эффекты внутреннего трения, составляет Dz = 0,02 м. Определить величину касательной силы Ft действующую на единичную площадь крыла. Испытания проводятся при температуре Т = 300 К.

Коэффициент динамической вязкости воздуха, находящегося в нормальных условиях равен h = 17,2×10 ­ 6 Па×с. Определить коэффициент теплопроводности воздуха l при тех же условиях.

Условия максимума и минимума интерференции.

Модуль амплитуды результирующего колебания Ев случае параллельности складываемых колебаний можно определить с помощью векторной диаграммы (рис. 3.6.1)

  Е = Е + Е + 2 Е Е cos () . (3.6.4)

 Тогда результирующая интенсивность

 I = I + I + 2  <cos () >. (3.6.5)

В реальных источниках излучателями являются отдельные атомы, не связанные друг с другом (и  меняются независимо). Поэтому разность фаз () непрерывно изменяется, принимая с равной вероятностью любые значения, так что среднее по времени значение <cos()> равно нулю.

  Тогда суммарная интенсивность равна сумме интенсивностей складываемых волн – интерференция отсутствует.

Если же добиться, чтобы разность фаз в каждой точке пространства оставалась неизменной с течением времени, то значение интенсивности в разных точках пространства будет отличным от суммы интенсивностей складываемых волн и различным в разных точках в зависимости от величины cos (). В частности, при cos () = 1 интенсивность будет принимать максимальное значение:

  I=I+I+2=. (3.6.6) Как нетрудно видеть, такая интенсивность будет осуществляться при 

  =  — =2m, (3.6.7) где целое число m = 0, 1, 2, …называется порядком максимума интерференции. Если cos () = —1, интенсивность будет минимальна:

 . (3.6.8) Такая интенсивность наблюдается в точках, где

  =  ─  = ( 2m + 1). (3.6.9) Условия (3.6.7) и (3.6.9) называют условиями соответственно максимума и минимума интерференции.

Волны, в которых вектора  образуют угол не равный /2 и разность фаз колебаний  в каждой точке не меняется с течением времени, называются когерентными. Интерференционную картину могут дать только такие волны.

Фаза колебаний, возбуждаемых волной в некоторой точке пространства, зависит от расстояния, пройденного волной (x) и показателя преломления среды, в которой она распространяется (n).Фаза волны (для плоской волны)

.

 Величина s = nx называется оптическим ходом волны, а  =(s–s)─ оптической разностью хода волн. Разность фаз колебаний в данной точке, которую будем в дальнейшем обозначать  и оптическая разность хода волн связаны соотношением

 =, (3.6.10)

где  – длина волны в вакууме,  = k – волновое число в вакууме. Тогда условия возникновения максимумов и минимумов интенсивности можно записать:

I = I, если = m ; (3.6.11)

I = I, если  = (2т+1) . (3.6.12)

Однако все вышеизложенное справедливо лишь для монохроматических волн. При наложении волн от двух реальных источников или даже от разных участков одного и того же протяженного источника интерференция не наблюдается. Следовательно, независимые источники некогерентны. Причиной этого является сам механизм излучения света атомами источника. Атом, получивший избыточную энергию (перешедший в возбужденное состояние), затем в течение очень короткого промежутка времени ( ≈10с) излучает электромагнитную волну (цуг) и возвращается в нормальное (невозбужденное) состояние. Спустя некоторое время атом может вновь возбудиться и вновь излучить короткий импульс (цуг волны), причем заметим, что атомы излучают независимо друг от друга со случайными начальными фазами, беспорядочно изменяющимися от одного акта излучения к другому. Поэтому спонтанно излучающие атомы представляют собой некогерентные источники.

Для получения когерентных волн применяют метод разделения волны от одного источника на две или несколько систем волн, так чтобы в каждой из них было представлено излучение одних и тех же атомов источника. Такие волны в силу общности происхождения когерентны и могут создать интерференционную картину. Принципиально возможны два метода получения таких систем: метод деления волнового фронта (опыт Юнга, бипризма Френеля и т.д. ) и метод деления амплитуды или деление по ходу волны ( интерференция в тонких пленках). При этом чтобы новые волны были когерентны при делении волнового фронта, необходимо соблюдение некоторых условий, о которых речь пойдет далее.

Образовавшиеся после разделения вóлны во всех интерференционных схемах можно представить как бы исходящими из двух точечных источников S1 и S2 (действительных Рис.3.6.2.

или мнимых — это не существенно). Поэтому общий подход к интерпретации получаемых результатов будет единым, с него мы и начнем.

Рассмотрим две волны, исходящие из когерентных источников S1 и S2 (рис.3.6.2). Пусть волны распространяются в вакууме. В области, где эти волны перекрываются — ее называют зоной интерференции — должна возникать система чередующихся максимумов и минимумов освещенности, которую можно наблюдать на экране Э.

Разность расстояний r2 и r1 от источников до интересующей нас точки P D = r2 ‑ r1  представляет собой разность хода волн. В точках на экране, где выполняется условие (3.6.11), наблюдается максимум интенсивности, а в точках, где выполняется (3.6.12) – минимум.

В случае, когда волны от источников распространяются не в вакууме, а в среде с показателем преломления n под D следует понимать не геометрическую, а оптическую разность хода интерферирующих волн: D = n(r2 ‑ r1). При этом l — это по-прежнему длина волны в вакууме.

Найдем координаты точек на экране, где наблюдаются интерференционные максимумы и минимумы. В практически важных случаях расстояние от источников до экрана l много больше расстояния между ними d (угол θ мал) (см. рис.3.6.2)) и разность хода D можно записать как D =d∙sin =d·θ. А так как θ » x/l, то для максимумов, согласно (3.6.11), получим d·x/l = ml, откуда координата максимума  (3.6.13) 

В точке x = 0 расположен максимум, соответствующий нулевой разности хода. Для него порядок интерференции m = 0. Это центр интерференционной картины. При переходе к соседнему максимуму m меняется на единицу и x — на величину Dx, которую называют шириной интерференционной полосы. Таким образом,

 или  (3.6.14)

где y угол, под которым видны оба источника из центра экрана, y = d/l (см. рис.3.6.2).

Проведя аналогичные выкладки, найдем координату минимума

. (3.6.15)

Ширину интерференционной полосы можно найти и как расстояние между соседними минимумами. Соответствующий расчет даст также соотношение (3.6.14)

Из этих формул видно, что для увеличения ширины полосы следует увеличивать l, или уменьшать d, или то и другое, т. е. в конечном счете — уменьшать угловое расстояние y между источниками. Полезно иметь в виду, что размер интерференционной картины обычно не превышает 1 мм, это при расстоянии от источников до экрана порядка нескольких десятков сантиметров.

Практически для получения более яркой интерференционной картины в качестве источников S1 и S2 используют две щели (или изображения исходного источника – щели S), и интерференционная картина имеет вид чередующихся светлых и темных полос, параллельных данным щелям.

Найдем распределение интенсивности на экране. Рассмотрим идеализированный случай, когда источники S1 и S2 строго монохроматические. В интересующую нас точку экрана колебания от этих источников будут приходить практически с одинаковой амплитудой, A1 = A2 = A0. Тогда, согласно (3.6.4),

 (3.6.16)

где d — разность фаз. D/l. В нашем случае d = 2π d·x/ll. Имея в виду, что интенсивность I  пропорциональна квадрату амплитуды A2, получим

 (3.6.17)

где h = πd/ll, I0 – интенсивность в максимумах (в минимумах I = 0). Полученное идеализированное распределение интенсивности I(x) несколько отличается, естественно, от реального, которому соответствует рисунок.