Курс лекций по физике Примеры решения задач

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

Явление дифракции. Зоны дифракции. Дифракция Френеля.

  Под дифракцией понимают явления, наблюдаемые при распространении волн в среде с резкими неоднородностями (края экранов, отверстия и др.), что связано с отклонениями от их прямолинейного распространения. Это приводит, в частности для световых волн, к огибанию волнами препятствий и проникновению света в область геометрической тени.

Отметим, что явление дифракции наблюдается для любых волн. Мы постоянно наблюдаем дифракцию звуковых волн, волн на поверхности воды, радиоволн. Для наблюдения же дифракции световых волн необходимы специальные условия, обусловленные малостью их длин волн l.

Наблюдение дифракции света проводят обычно по такой схеме. На пути световой волны помещают непрозрачную преграду, закрывающую часть световой волны. За преградой располагают экран, на котором при определенных условиях возникает дифракционная картина в виде той или иной системы полос и пятен — максимумов и минимумов освещенности. Исследование распределения интенсивности света на экране и будет являться основной нашей задачей.

Вообще говоря, для описания дифракционных явлений не требуется вводить никаких новых принципов. В рамках электромагнитной теории света задача сводится к нахождению решения уравнений Максвелла при определенных граничных условиях. Однако решение такой задачи представляет большие математические трудности. Поэтому в большинстве случаев, представляющих практический интерес, вполне достаточным оказывается приближенный метод решения задачи о распределении интенсивности света, основанный на принципе Гюйгенса-Френеля. Именно этот принцип и основанные на нем простые и наглядные методы расчета мы и возьмем за основу дальнейшего изложения.

Принцип Гюйгенса - Френеля.

Первое объяснение дифракции света принадлежит Френелю (1818 г.). Он показал, что количественное описание дифракционных явлений возможно на основе построения Гюйгенса, если его дополнить принципом интерференции вторичных волн.

Принцип Гюйгенса устанавливает способ построения фронта волны в момент времени  по известному положению фронта в момент времени t. Согласно этому принципу каждая точка, до которой доходит волновой фронт, служит вторичным источником волн. Огибающая этих вторичных волн и дает положение волнового фронта в следующий момент времени. Френель дополнил этот принцип положением о когерентности вторичных источников. Тогда вторичные волны, придя в точку наблюдения, дадут интерференционную картину. Учет амплитуд и фаз вторичных волн позволит найти результирующую амплитуду.

Рассмотрим для примера экран Э с некоторым отверстием, через которое проходит свет от точечного монохроматического источника Р0 (рис.3.8.1). Задача состоит в определении напряженности Е в любой точке Р за экраном.

В методе Френеля предполагается, что напряженность Е в точках отверстия такая же, как и при 

отсутствии экрана, и что в точках непосредственно Рис.3.8.1.

за экраном Е = 0. Т. е. считается, что существенна 

только форма отверстия экрана, но не сам экран.

 Это предположение, как показал опыт, справедливо, когда размеры отверстия и его расстояния до источника и точки наблюдения Р значительно больше длины волны l, т. е. когда отклонения от геометрической оптики довольно малы. Оно нарушается для отверстия, например, щели, ширина которой значительно меньше l.

Закроем мысленно отверстие в экране произвольной поверхностью S. Разобьем эту поверхность на элементарные участки dS. По предположению Френеля каждый из этих участков становится источником вторичной сферической волны. Амплитуда вторичной световой волны, достигающей точки наблюдения Р, должна быть пропорциональна амплитуде Е первичной волны, приходящей к элементу dS, а также площади самого элемента dS, и обратно пропорциональна расстоянию r от элемента dS до точки Р.

Для определения результирующей амплитуды колебаний в точке Р, т. е. суммы элементарных амплитуд, необходимо еще учесть, что колебания от разных элементов dS достигают точки Р с разными фазами. Это приводит к появлению в выражении для результирующей амплитуды множителя cos(kr + a), где k = 2π/l, а a — дополнительная фаза, равная фазе первичной волны в элементе dS (для разных элементов она в общем случае не одинакова).

Таким образом, результирующая амплитуда напряженности Е в точке Р может быть представлена как суперпозиция элементарных амплитуд с учетом их взаимных фазовых соотношений:

 (3.8.1)

где интегрирование проводится по выбранной нами поверхности S.

В интеграле (3.8.1) a0 величина, определяемая амплитудой световой волны в месте нахождения элемента dS; К() — некоторый коэффициент, зависящий от угла между первоначальным направлением световой волны в данной точке (волновым вектором ) и направлением на точку Р. Естественно предположить, что коэффициент К монотонно убывает с ростом угла. Многие практически важные дифракционные задачи можно, как мы увидим далее, решить при весьма общих предположениях относительно К(), не уточняя конкретного вида зависимости его от угла .

В дальнейшем мы будем рассматривать ситуации, позволяющие в качестве поверхности S брать волновую поверхность падающей волны, что значительно упрощает расчеты. В этом случае угол в коэффициенте К() представляет собой угол между нормалью  к элементу поверхности dS и направлением от dS к точке Р, а дополнительную фазу a в (3.8.1) можно считать равной нулю (a = 0).

Расчет, базирующийся на принципе Гюйгенса—Френеля можно представить в простой и наглядной форме с помощью векторной (фазовой) диаграммы (рис.3.8.2)Использование подобных диаграмм в дальнейшем позволит значительно упростить многие рассуждения Рис.3.8.2.

и расчеты. На этой диаграмме результирующая амплитуда

 представлена как векторная сумма амплитуд d колебаний в точке Р от различных элементов dS поверхности S с учетом их фаз. Разность фаз между различными векторами  на диаграмме определяет угол между этими векторами. 

Полуволновые зоны. Зоны Френеля.

Суммирование (интегрирование) амплитуд элементарных колебаний, приходящих в точку Р, вообще говоря, весьма сложно. Но в простейших случаях, обладающих определенной симметрией, интегрирование может быть заменено простым алгебраическим или графическим сложением (последнее особенно наглядно).

Суммирование амплитуд колебаний, приходящих от различных элементов волновой поверхности S,  Френель предложил делать с помощью разбиения поверхности S на зоны, конфигурация которых зависит от симметрии рассматриваемой задачи.

Суть метода состоит в том, чтобы разбить волновую поверхность на участки (зоны), так чтобы расстояния до точки наблюдения от краев каждой зоны отличались на половину длины волны - . Конфигурация самих зон зависит от симметрии задачи. Эти зоны называются полуволновыми зонами. Смысл такого разбиения в том, что в этом случае волны Рис.3.8.3.

от вторичных источников приходят в точку наблюдения

со сдвигом по фазе на  и при интерференции гасят друг друга. Это, как мы убедимся в дальнейшем, существенно упрощает расчет.

Частным случаем полуволновых зон являются зоны Френеля. В этом случае зоны представляют собой кольца, которые симметричны относительно линии , где  - источник, а Р – точка наблюдения (рис.3.8.3). Эти зоны выбираем так, чтобы расстояния от краев каждой зоны до точки Р отличались друг от друга на половину длины волны. Рис.3.8.4.

Найдем внешний радиус m-й зоны Френеля, rm.

С этой целью воспользуемся рисунком 3.8.4. Из него видно, что 

,

где а – радиус волновой поверхности, отрезок ВО равен . Раскрыв это выражение и учитывая, что при на очень больших т членами, которые входит  можно пренебречь, получим

. (3.8.2)

Заметим, что если падающая нормально на данное отверстие волна плоская (а®µ), то

 (3.8.4) 

Используя формулу площади сферического сегмента, получим площадь т-ой зоны  (3.8.5)

т. е. практически одинаковы для всех зон. Однако, амплитуды колебаний, приходящих в точку Р от вторичных источников этих зон, монотонно и слабо убывают из-за увеличения расстояния r до точки Р от каждой следующей зоны и роста угла между нормалью к элементам зоны и направлением на точку Р.

Спираль Френеля.

Рассмотрим графический метод сложения амплитуд. В этом простом и наглядном методе каждую полуволновую зону Френеля дополнительно мысленно разбивают на весьма узкие кольцевые зоны. Амплитуду колебаний, создаваемых вторичными источниками каждой из таких зон, изобразим вектором d. Вследствие увеличения расстояния r и уменьшения коэффициента К амплитуда колебаний, создаваемых каждой следующей узкой кольцевой зоной, будет убывать по модулю и отставать по фазе от колебаний, создаваемых предыдущей зоной. Изобразив отставание по фазе поворотом каждого вектора d против часовой стрелки на соответствующий угол, получим цепочку векторов, векторная сумма которых и есть результирующая амплитуда колебаний в точке Р.

На рис.3.8.5a показан результат действия 1-й зоны Френеля. Здесь амплитуда колебаний dAN от узкого кольца, прилегающего к границе 1-й зоны Френеля, отстает по фазе на π от амплитуды колебаний, приходящих в точку Р из центра 1-й зоны — от точки

 Рис.3.8.5.

О - поэтому соответствующие этим амплитудам векторы взаимно противоположны по направлению.

Продолжая построение, получим векторную диаграмму для результирующей амплитуды колебаний в точке Р от действия первых двух зон Френеля (рис.3.8.5б), затем от первых трех зон Френеля (рис.3.8.5в) и т. д. Цепочка по мере увеличения числа узких кольцевых зон будет “закручиваться” в спираль, и в результате амплитуда от действия

всех зон (всей волновой поверхности) будет равна Аµ (рис.3.8.6). Эту спираль называют спиралью Френеля. Квадрат этой величины Рис.3.8.6.

характеризует интенсивность в точке Р, если волна

распространяется в отсутствие всяких преград (полностью открытый волновой фронт). 

При построении векторной диаграммы мы получаем спираль (а не окружность), так как амплитуды, создаваемые отдельными зонами, как уже говорилось, монотонно слабо убывают.

Дифракция Френеля от круглого отверстия и круглого диска.

Используя разобранный метод, можно достаточно легко решить задачу о дифракции от простейших преград.

Сложение гармонических колебаний Два одинаково направленных гармонических колебания с одинаковыми периодами и амплитудами А1 = 10 см и А2 = 6 см складываются таким образом, что результирующая амплитуда составляет А = 14 см. Найти разность фаз складываемых колебаний.

Сложить два гармонических колебания, происходящие в соответствие с уравнениями: х1 = А1cos(wt + j1); x2 = A2cos(wt + j2), где А1 = 1 см, j1 = p/3, А2 = 2 см, j2 = 5p/6. Записать уравнение результирующего колебания.

Постоянный электрический ток Напряжение в проводнике сопротивлением R = 1 Ом нарастает по линейному закону от Umin = 1 B до Umax = 10 В в течение времени t = 10 с. Определить заряд, прошедший через проводник.

В рентгеновской трубке пучок электронов с плотностью тока j = 0,2 А/мм2 попадает на скошенный под углом a = 300 торец металлического стержня площадью сечения s = 4×10 –4 м2. Определите силу тока в стержне.

На концах нихромовой нити длиной l = 5 м поддерживается разность потенциалов Dj = 10 В. Найти плотность электрического тока в проводнике, если он находится при температуре Т = 800 К.

Закон Ома для участка цепи В приведенной схеме все электрические сопротивления одинаковы и равны R1 = R2 = ××××= R6 = R= 8 Ом. Определить общее сопротивление цепи R0

Какой шунт нужно присоединить к гальванометру, имеющему шкалу на N = 100 делений с ценой деления i = 1 мкА и внутренним сопротивлением rA = 180 Ом, чтобы им можно было измерять ток силой до I = 1 мА?

Три одинаковых графитовых кольца радиусом r = 1 м и диаметром d = 1 см имеют электрический контакт в точках A,B,C,D,F,E. Определить сопротивление фигуры при включении её в точках А и В

Батарея замкнутая на сопротивление R1 = 10 Ом, даёт ток силой I1 = 3 А; замкнутая на сопротивлениеR2 = 20 Ом, она даёт ток силой I2 = 1,6 А. Определите ЭДС источника e и её внутреннее сопротивление r.

Три одинаковые батареи соединены параллельно и подключены к внешнему сопротивлению. Как изменится сила тока через это сопротивление, если полярность одной из батарей поменять на обратную?

Источник тока обладает внутренним сопротивлением r = 1 Ом, ёмкость конденсатора С = 10 мкФ, R1 = 5 Ом, R2 = 10 Ом. До замыкания ключа вольтметр показывает напряжение U1 = 10 В, а после замыкания - U2 = 8 В. Определить заряд конденсатора и величину сопротивления R3.

Два последовательно соединённых конденсатора С1 = 2 мкФ и С2 = 4 мкФ замкнуты на источник тока с e = 20 В, параллельно которому включено сопротивление R = 20 Ом. Ток короткого замыкания источника IКЗ в три раза превышает рабочий стационарный ток в цепи I. Определить падение напряжения на каждом из конденсаторов.

Схема состоит из трёх идеальных источников ЭДС, два из которых заданы: e1 = 10 В, e2 = 8 В, и трёх сопротивлений два из которых тоже известны: R1 = 100 Ом, R2 = 80 Ом. Определить при каком значении e3 ток через сопротивление R3 ток течь не будет.

Три источника с ЭДС e1 = 12 В, e2 = 5 В и e3 = 10 В с одинаковым внутренним сопротивлением r = 1 Ом соединены между собой одноимёнными полюсами. Пренебрегая сопротивлением соединительных проводов, определить силы токов, протекающих через источники.