Курс лекций по физике Примеры решения задач

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Сети, компьютеры
Локальные и глобальные
компьютерные сети
Методы маршрутизации
Построение сети
Технология Ethernet
Технология мобильных сетей
Адресация в IP-сетях
Вычислительные сети
Адресация в сетях
Топология сети
Глобальная компьютерная сеть Интернет
Электронная почта
Адрес E-mail
Поиск информации в Интернет
Структурированные кабельные системы
Математика
Аналитическая геометрия
Векторная алгебра
Пределы
Примеры вычисления интегралов
Производная и дифференциал
Изменить порядок интегрирования
в интеграле
Вычислить двойной интеграл
Интегрирование по частям
Исследовать на сходимость ряд
Вычислить предел функции
Решение типового варианта
контрольной работы
Энергетика
Курс лекций общая энергетика
Физика, электротехника
Лабораторная работа по ТОЭ
Двигатели, генераторы, трансформаторы
Контрольная по физике
ТОЭ теоретические основы
электротехники
Цифровые электронные устройства
Способы охлаждения
полупроводниковых приборов
Теория электрических цепей
Тормозное рентгеновское излучение
Ядерная модель атома
Равновесная плотность энергии излучения
Способы получения
интерференционной картины
Понятие когерентности
Явление дифракции
Дифракция от круглого отверстия
Дифракция Фраунгофера от щели
Дифракционная решетка
Тепловое излучение. Формула Планка
Техническая механика
Контрольная работа
Курс лекций
Лабораторные работы
Задачи по сопромату
Моменты инерции сечения
Деформации и перемещения при кручении
валов
Определение опорных реакций
Расчет статически неопределимых балок
Расчет ферм
Расчеты на прочность по допускаемым
напряжениям
Моменты инерции
Изгиб с кручением
Вычислить упругую объемную
деформацию
Рассчитатьна прочность по III-ей теории
прочности
История искусства
Лекции по эргономике
для дизайнеров интерьера
Египет, Индия и Китай
Доисторическая эпоха
Буддизм
Ассирия
ЭЛЛАДА
Коринфский стиль
Рим
Хлеба и зрелищ
этрусский дом
ДРЕВНЕХРИСТИАНСКАЯ ЭПОХА
Борьба язычества с христианством
римские катакомбы
САСАНИДЫ
Магометанство
Появление арабов в Европе
История искусства государства
Российского

Дальнейшее развитие христианства
в Европе

Византийская архитектура
Новгорода и Пскова
Покровский собор в Филях
четыре вида древней иконописи
Иконоборство
Эпоха петровских преобразований
История искусства западной Европы
периода Возрождения
Романский стиль. — Готика
Церковь Парижской Богоматери
ИТАЛИЯ В ЭПОХУ ВОЗРОЖДЕНИЯ
Жизнь Италии в эпоху Возрождения
Ломбардское направление живопис
НИДЕРЛАНДЫ
Леонардо да Винчи
Общее состояние искусств в Европе.
Народные росписи
Уральский расписной туесок
Нижнетагильские туеса
А.Н.Голубева «Тагильский букет»
 

ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ.

Тепловое излучение. Формула Планка.

Тепловое излучение и люминесценция

Излучение телами электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение, т. е. испускание электромагнитных волн за счет внутренней энергии тел. Все остальные виды свечения, возбуждаемые за счет любого вида энергии, кроме внутренней (тепловой), объединяются под общим названием «люминесценция».

Окисляющийся на воздухе фосфор светится за счет энергии, выделяемой при химическом превращении. Такой вид свечения называется хемилюминесценцией. Свечение, возникающее в газах и твердых телах под воздействием электрического поля, называется электролюминесценцией. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминесценцией. Свечение, возбуждаемое поглощаемым телом электромагнитным излучением, называется фотолюминесценцией.

Тепловое излучение имеет место при любой температуре, однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.

Окружим излучающее тело оболочкой с идеально отражающей поверхностью (рис. 3.10.1). Воздух из оболочки удалим. Отраженное оболочкой излучение, упав на тело, поглотится им (частично или полностью). Следовательно, будет происходить непрерывный обмен энергией между телом и заполняющим оболочку излучением. Если распределение энергии между телом и излучением остается неизменным для каждой длины волны, состояние системы тело — излучение будет равновесным. Опыт показывает, что единственным видом излучения, которое может находиться Рис.3.10.1.

  в равновесии с излучающими телами, является тепловое

излучение. Все остальные виды излучения оказываются неравновесными.

Способность теплового излучения находиться в равновесии с излучающими телами обусловлена тем, что его интенсивность возрастает при повышении температуры. Допустим, что равновесие между телом и излучением нарушено и тело излучает энергии больше, чем поглощает. Тогда внутренняя энергия тела будет убывать, что приведет к понижению температуры. Это в свою очередь обусловит уменьшение количества излучаемой телом энергии. Температура тела будет понижаться до тех пор, пока количество излучаемой телом энергии не станет равным количеству поглощаемой энергии. Если равновесие нарушится в другую сторону, т. е. количество излучаемой энергии окажется меньше, чем поглощаемой, температура тела будет возрастать до тех пор, пока снова не установится равновесие. Таким образом, нарушение равновесия в системе тело — излучение вызывает возникновение процессов, восстанавливающих равновесие.

Иначе обстоит дело в случае люминесценции. Покажем это на примере хемилюминесценции. Пока протекает обусловливающая излучение химическая реакция, излучающее тело все больше и больше удаляется от первоначального состояния. Поглощение телом излучения не изменит направления реакции, а наоборот, приведет к более быстрому (вследствие нагревания) протеканию реакции в первоначальном направлении. Равновесие установится лишь тогда, когда будет израсходован весь запас реагирующих веществ и свечение, обусловленное химическими процессами, заменится тепловым излучением.

Итак, из всех видов излучения равновесным может быть только тепловое излучение. К равновесным состояниям и процессам применимы законы термодинамики. Поэтому тепловое излучение должно подчиняться некоторым общим закономерностям, вытекающим из принципов термодинамики. К рассмотрению этих закономерностей мы и перейдем.

Характеристики излучения и излучающего тела.

Обозначим через u плотность энергии излучения, т.е. количество энергии в единице объема. Излучение представляет собой совокупность волн различных частот (бегущих или стоячих). Поскольку плотность энергии излучения разной частоты различна, обозначим  объемную плотность лучистой энергии, приходящийся на интервал частот . Очевидно, что

. (3.10.1)

Интенсивность теплового излучения мы будем характеризовать величиной потока энергии, измеряемой в ваттах. Энергия излучения связана с излучающим телом. Поток энергии, испускаемый единицей поверхности излучающего тела по всем направлениям (в пределах телесного угла 2π), называют энергетической светимостью тела. Мы будем обозначать эту величину буквой R. Энергетическая светимость является функцией температуры.

Излучение состоит из волн различных частот ω (или длин ). Обозначим поток энергии, испускаемый единицей поверхности тела в интервале частот dω, через dRω. При малом интервале dω поток dRω будет пропорционален dω:

. (3.10.2)  

Величина rω называется испускательной способностью тела. Как и энергетическая светимость, испускательная способность сильно зависит от температуры тела. Таким образом, rω есть функция частоты и температуры. Испускательная способность это поток энергии, излучаемый единицей поверхности тела во всех направлениях в единичном интервале частот вблизи .

Энергетическая светимость связана с испускательной способностью формулой

 (3.10.3)

(чтобы подчеркнуть, что энергетическая светимость и испускательная способность зависят от температуры, мы их снабдили индексом Т).

Излучение можно характеризовать вместо частоты ω длиной волны. Участку спектра dω будет соответствовать интервал длин волн dλ. Определяющие один и тот же участок величины dω и dλ связаны простым соотношением, вытекающим из формулы λ=2πc/ω. Дифференцирование дает:

. (3.10.4)

Знак минус в этом выражении не имеет существенного значения, он лишь указывает на то, что с возрастанием одной из величин, ω или λ, другая величина убывает. Поэтому минус в дальнейшем мы не будем писать.

Доля энергетической светимости, приходящаяся на интервал dλ, может быть по аналогии с (3.10.2) представлена в виде:

. (3.10.5)

Если интервалы dω и dλ, входящие в выражения (3.10.2) и (3.10.5), связаны соотношением (3.10.4), т. е. относятся к одному и тому же участку спектра, то величины dRω и dRλ должны совпадать:

Заменив в последнем равенстве dλ согласно (3.10.4), получим

откуда

. (3.10.6)

С помощью формулы (3.10.6) можно перейти от rλ к rω и наоборот.

Пусть на элементарную площадку поверхности тела падает поток лучистой энергии dФω, обусловленный электромагнитными волнами, частота которых заключена в интервале dω. Часть этого потока dФ’ω будет поглощена телом, Безразмерная величина

 (3.10.7)

называется поглощательной способностью тела. Поглощательная способность тела есть функция частоты и температуры. Поглощательная способность это доля энергии, поглощенная телом из падающего на него потока.

По определению aωT не может быть больше единицы. Для тела, полностью поглощающего упавшее на него излучение всех частот, aωT = 1. Такое тело называется абсолютно черным. Будем в дальнейшем обозначать испускательную и поглощательную способность абсолютно черного тела  и . Тело, для которого aωT ≡ aT =const<1, называют серым. Если = 0, это или абсолютно прозрачное тело или абсолютно зеркальное.

Закон Кирхгофа.

Между испускательной и поглощательной способностями любого тела имеется связь. В этом можно убедиться, рассмотрев следующий эксперимент. Пусть внутри замкнутой оболочки, поддерживаемой при постоянной температуре Т, помещены несколько тел (рис.3.10.2). Полость внутри оболочки эвакуирована

 (там отсутствуют молекулы какого-либо вещества), так что тела могут обмениваться энергией между собой и с оболочкой лишь путем испускания и поглощения электромагнитных волн. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия — все тела примут одну и ту же температуру, равную температуре оболочки Т. В Рис.3.10.2.

таком состоянии тело, обладающее бóльшей испускательной

способностью rωT, теряет в единицу времени с единицы поверхности больше энергии, чем тело, обладающее меньшей rωT. Поскольку температура (а, следовательно, и энергия) тел не меняется, то тело, испускающее больше энергии, должно и больше поглощать, т. е. обладать большей aωT. Таким образом, чем больше испускательная способность тела rωT, тем больше и его поглощательная способность aωT. Отсюда вытекает соотношение

 , (3.10.8)

где индексы 1, 2, 3 и т. д. относятся к разным телам.

Соотношение (3.10.8) выражает установленный Кирхгофом закон, который формулируется следующим образом: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией частоты (длины волны) и температуры:

. (3.10.9)

Сами величины rωT и aωT могут меняться чрезвычайно сильно при переходе от одного тела к другому. Отношение же их оказывается одинаковым для всех тел. Это означает, что тело, сильнее поглощающее какие-либо лучи, будет эти лучи сильнее и испускать (не следует смешивать испускание лучей с их отражением). Функция называется функцией Кирхгофа.

Для абсолютно черного тела по определению aωT = 1. Следовательно, из формулы (3.10.9) вытекает, что rωT для такого тела равна f(ω, Т). Таким образом, универсальная функция Кирхгофа f(ω, Т) есть не что иное, как испускательная способность абсолютно черного тела 

При теоретических исследованиях для характеристики спектрального состава равновесного теплового излучения удобнее пользоваться функцией частоты f(ω,Т). В экспериментальных работах удобнее пользоваться функцией длины волны φ(λ, Т). Обе функции связаны друг с другом формулой

 (3.10.10)

аналогичной формуле (3.10.6). Согласно (3.10.10) для того, чтобы по известной функции f(ω, Т) найти φ(λ, Т), нужно заменить в f(ω, Т) частоту ω через 2πс/λ и получившееся выражение умножить на 2πс/λ2:

 (3.10.11)

Для нахождения f(ω, Т) по известной φ(λ, Т) нужно воспользоваться соотношением

 (3.10.12)

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощательную способность aωT, близкую к единице, лишь в ограниченном интервале частот; в далекой инфракрасной области их поглощательная способность заметно меньше единицы. Однако можно создать устройство, сколь угодно близкое по своим свойствам к абсолютно черному телу. Такое устройство представляет собой почти замкнутую полость, снабженную малым отверстием (рис. 3.10.3). Излучение, проникшее внутрь через отверстие, прежде чем выйти обратно из отверстия, претерпевает многократные отражения. При каждом отражении часть энергии поглощается, в результате Рис.3.10.3.

чего практически все излучение любой частоты поглощается

такой полостью. Согласно закону Кирхгофа испускательная способность такого устройства очень близка к f(ω, Т), причем Т означает температуру стенок полости. Таким образом, если стенки полости поддерживать при некоторой температуре Т, то из отверстия выходит излучение, весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре. Проводя эксперимент и разлагая это излучение в спектр с помощью дифракционной решетки можно измерить интенсивность различных участков спектра.Такой эксперимент дает можно вид функции f(ω,Т) или φ(λ, Т). Результаты таких опытов приведены на рис.3.10.4. Разные кривые относятся к различным значениям температуры Т абсолютно черного тела. Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Из рис.3.10.4 следует, что энергетическая светимость абсолютно черного тела сильно возрастает с температурой. Максимум испускательной способности с увеличением темпера- Рис.3.10.4.

туры сдвигается в сторону более коротких волн.

 

 

Почему изотермическое расширение газа возможно только при подведении тепла от внешнего источника?

Известно, что температура газов в камерах сгорания современных дизелей достигает 2200 0С, а на входе в коллектор ­ 300 0С, на выходе из глушителя ­ порядка 150 0С. Как это можно объяснить?

На глубине h = 1000 м производится взрыв. Масса взрывчатого вещества m = 10 кг, энергия, освобождающаяся при взрыве 1×10 ­ 3 кг вещества равна s = 4×10 3 Дж. Оценить максимальный радиус образовавшейся при взрыве газовой полости.

Может ли теплоёмкость идеального газа быть отрицательной?

Круговые процессы. Тепловые двигатели Когда газ в цилиндре двигателя внутреннего сгорания обладает большим запасом внутренней энергии: в момент проскакивания электрической искры или в конце рабочего хода поршня?

Идеальный двухатомный газ, содержащий n = 1 моль вещества, находится под давлением р1 = 0,1 МПа при температуре Т1 = 300 К, нагревают при постоянном объёме до давления р2 = 0,2 МПа. После этого газ расширился до начального давления, а затем изобарно сжат до начального объёма V1. Построить график цикла, определить характерные температуры и термический КПД h.

Идеальный газ, совершающий цикл Карно, 2/3 количества тепла dQ1, получаемого от нагревателя, отдаёт охладителю, температура которого составляет Т2 = 280 К. Определить температуру Т1 нагревателя.

Идеальный газ совершает цикл Карно, совершая на стадии изотермического расширения работу А = 5 Дж. Определить работу изотермического сжатия, если термический КПД цикла h = 0,2.

Второе начало термодинамики К воде с массой m1 = 5 кг с температурой Т1 = 280 К добавили m2 = 8 кг воды с температурой Т2 = 350 К. Определить температуру смеси и изменение энтропии, при смешивании воды

Лёд массой m = 0,2 кг, взятый при температуре Т1 = 263 К был нагрет до температуры Т2 = 273 К и расплавлен. Образовавшуюся воду нагрели до температуры Т3 = 283 К. Определить изменение энтропии указанных процессов.

Вычислите приращение энтропии водорода массы m при переходе его от объема V1 и температуры T1 к объему V2 и температуре Т2, если газ: а) нагревается при постоянном объеме V1, а затем изотермически расширяется; б) расширяется при постоянной температуре T1 до объема V2, затем нагревается при постоянном объеме; в) адиабатически расширяется до объема V2, а затем нагревается при постоянном объеме.

Затухающие колебания Амплитуда затухающих колебаний математического маятника за время t1=5 мин уменьшилась в два раза. За какое время, считая от начального момента, амплитуда уменьшится в восемь раз?

Математический маятник колеблется в среде, обеспечивающей величину логарифмического декремента q = 0,5. Во сколько раз уменьшится амплитуда колебаний по истечении одного полного периода колебаний?

Математический маятник длиной l = 2 м, колеблющийся в среде с потерями, за время t = 10 мин потерял 50 % своей энергии. Определить логарифмический декремент маятника.