Электротехника Расчеты электрических цепей

Электротехника
  • Элементы электрических цепей
  • Схемы замещения источников
    электрической энергии
  • Анализ цепи переменного тока
     и входящих в нее элементов
  • Параллельное соединение резистивного
    и индуктивного элементов
  • Машины постоянного и переменного тока
  • Принцип действия асинхронного
    и синхронного двигателей
  • Принцип действия машин постоянного тока
  • Трансформаторы и электромагнитные устройства
  • Трансформатор
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
  • Машины переменного тока
  •  Электрические машины разделяются
    на генераторы и электродвигатели
  • Коллекторные двигатели переменного тока
  • Разборка и сборка электродвигателя
    постоянного тока
  • Выполнению ремонтных работ
  • Электроника
  • Электрические и электронные аппараты
    и устройства
  • Некоторые лампы СВЧ диапазона
  • Полупроводниковые диоды
  • Тиристоры.
  • Выпрямители и инверторы промышленной частоты
  • Электронные усилители
  • Обратная связь в усилителях
  • Катодный и эмиттерный повторители
  • Усилители мощности
  • Повторитель напряжения
  • Шумы в усилителях
  • Генераторы электрических колебаний
  • RC-генераторы
  • Ждущий мультивибратор
  • Мультивибратор на ОУ
  • Цифровые электронные устройства
  • Реализация сложных логических функций
    на интегральных микросхемах
  • Последовательные цифровые устройства
  • Счётчик
  • Регистр
  • Комбинационное цифровое устройство
  •  Сумматоры
  • Импульсные генераторы
    на цифровых микросхемах
  • Охлаждение полупроводниковых приборов
  • Способы охлаждения полупроводниковых
    приборов
  • Воздушное, естественное
    и принудительное охлаждение
  • Системы охлаждения силовых модулей
  • Основные методы охлаждения
  • Расчет параметров охладителей
  • Выбор охладителя
  • Дискретные приборы
  •  

    СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

    Для стабилизации напряжения в устройствах небольшой мощности (до 5 кВт) применяются электромагнитные стабилизаторы:

    1) ферромагнитные насыщенного типа (без емкости), в которых используются явления, основанные на насыщении ферромагнитного сердечника;

    2) феррорезонансные (с емкостью), работа которых основана на резонансе токов и напряжений.

    Рассмотрим работу феррорезонансного стабилизатора. Он состоит из реактивной катушки 1, сердечник которой при заданном диапазоне напряжений U1 работает в состоянии магнитного насыщения, конденсатора С и автотрансформатора 2 магнитопровод которого не насыщен (рис. 4. 12.6.1).
    Обмотка автотрансформатора включена таким образом, чтобы напряжение на выходе стабилизатора U2 было равно разности

    U2 = U2' - U2",

    где U2" - напряжение на выходе автотрансформатора;
    U2' - напряжение на выходах реактивной катушки.

    СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

    Напряжение U2' благодаря явлению феррорезонанса имеет резко нелинейную зависимость от тока I1 (кривая 1). Напряжение на выходе автотрансформатора U2" в виду насыщенного состояния его магнитопровода пропорционально току I1 (кривая 2). Если параметры автотрансформатора и реактивной катушки подобраны таким образом, что наклон кривой 1 к оси абсцисс в области магнитного насыщения равен наклону кривой 2, то разность U2' - U2''= const. В этом случае напряжение на выходе не зависит от тока I1 (кривая 3) и, следовательно, от напряжения U1.

    МАГНИТНЫЙ УСИЛИТЕЛЬ

    Магнитный усилитель - это статический аппарат, применяемый в схемах автоматического регулирования.

    Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода (рис. 4.12.7.1).
    МАГНИТНЫЙ УСИЛИТЕЛЬ

    На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек соединенных последовательно. На среднем стержне размещается обмотка управления из большого количества витков. Если ток в нее не подается, а к рабочей обмотке подведено напряжение U1, то из за малого количества витков W~ магнитопровод не насыщается и почти все напряжение сети падает на сопротивление рабочих обмоток ZН. На потребителе в этом случае выделяется малая мощность. Если теперь пропустим по обмотке управления ток IУ, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи - увеличивается. Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

    ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

    В школьной практике часто возникает необходимость создания источника переменного тока повышенной частоты.

    С помощью трансформаторов легко построить удвоитель или утроитель частоты. Утроитель частоты состоит из трех однофазных трансформаторов, работающих при сильно насыщенном сердечнике (рис. 4.12.8.1). Первичные обмотки соединены "звездой", а вторичные - последовательно. Как известно, намагничивающий ток имеет сложную форму кривой и помимо основной гармонической составляющей имеет третью, изменяющуюся с частотой f3 = 3f1.

    При соединении первичной обмотки "звездой" токи основной гармоники уравновешиваются, и под действием третьей гармоники магнитный поток наводит во вторичной обмотке напряжение, изменяющееся с тройной частотой.
    ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

    Реализация сложных логических функций на интегральных микросхемах