ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Электротехника
  • Элементы электрических цепей
  • Схемы замещения источников
    электрической энергии
  • Анализ цепи переменного тока
     и входящих в нее элементов
  • Параллельное соединение резистивного
    и индуктивного элементов
  • Машины постоянного и переменного тока
  • Принцип действия асинхронного
    и синхронного двигателей
  • Принцип действия машин постоянного тока
  • Трансформаторы и электромагнитные устройства
  • Трансформатор
  • ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
  • ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
  • ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ
  • СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
  • Машины переменного тока
  •  Электрические машины разделяются
    на генераторы и электродвигатели
  • Коллекторные двигатели переменного тока
  • Разборка и сборка электродвигателя
    постоянного тока
  • Выполнению ремонтных работ
  • Электроника
  • Электрические и электронные аппараты
    и устройства
  • Некоторые лампы СВЧ диапазона
  • Полупроводниковые диоды
  • Тиристоры.
  • Выпрямители и инверторы промышленной частоты
  • Электронные усилители
  • Обратная связь в усилителях
  • Катодный и эмиттерный повторители
  • Усилители мощности
  • Повторитель напряжения
  • Шумы в усилителях
  • Генераторы электрических колебаний
  • RC-генераторы
  • Ждущий мультивибратор
  • Мультивибратор на ОУ
  • Цифровые электронные устройства
  • Реализация сложных логических функций
    на интегральных микросхемах
  • Последовательные цифровые устройства
  • Счётчик
  • Регистр
  • Комбинационное цифровое устройство
  •  Сумматоры
  • Импульсные генераторы
    на цифровых микросхемах
  • Охлаждение полупроводниковых приборов
  • Способы охлаждения полупроводниковых
    приборов
  • Воздушное, естественное
    и принудительное охлаждение
  • Системы охлаждения силовых модулей
  • Основные методы охлаждения
  • Расчет параметров охладителей
  • Выбор охладителя
  • Дискретные приборы
  •  

    Импульсные генераторы на цифровых микросхемах.

    Мультивибраторы на логических элементах.

    Такие схемы мультивибраторов широко используют в качестве задающих автогенераторов в различных цифровых устройствах. Простейшая схема симметричного мультивибратора на базовых логических элементах И-НЕ, взаимно охваченных положительными ОС с помощью двух времязадающих цепочек R1C1 и R2C2 показана на рис.7.33. Положим, что на интервале времени 0…t1 мультивибратор находится в состоянии, когда элемент DD1 закрыт, и на его выходе логическая «1», а элемент DD2 открыт, и на его выходе логический «0». Конденсатор C2 будет заряжаться выходным током элемента DD1, протекающим через резистор R2 (диод VD2 закрыт). Напряжение на входе DD2, выделяемое на резисторе R2, уменьшается по экспоненте c постоянной времени 1 = R2C2. В момент времени t = t1 это напряжение достигает порогового значения переключения и элемент DD2 переходит из состояния «0» в состояние «1», изменяя свое выходное напряжение. Скачок этого напряжения Uвых2 через конденсатор С1 подается на вход элемента DD1, переводя его в состояние «0». Так как напряжение на выходе элемента DD1 при этом уменьшилось до нуля, то конденсатор С2 быстро разрядится через открытый диод до нулевого напряжения. Одновременно, начиная с момента времени t = t1, происходит заряд конденсатора С1 и напряжение на входе логического элемента DD1 уменьшается. Когда в момент времени t = t2 напряжение на входе DD1 спадёт до уровня переключения, мультивибратор опять скачкообразно изменит свое состояние. Далее процессы в схеме мультивибратора начнут периодически повторяться. Длительность импульсов на выходах 1 и 2 при R1=R2=R, C1=С2=С будет (симметричный мультивибратор):

    и=RC ln (U1/Uпр) (),

    где U1 – значение напряжения на выходе DD1,2 соответствующее логической единицы, Uпр - пороговое значение напряжения переключения. Схемотехнически современные мультивибраторы выполняются в виде отдельных интегральных микросхем.

    Импульсные генераторы на цифровых микросхемах.

    Рис.7.33.

    Одновибратор.

    Наиболее просто одновибратор можно реализовать на базовых логических элементах 2И-НЕ (рис.7.34). Для этого в рассмотренную выше схему мультивибратора вводят цепь запуска, выполненную на логическом элементе DD1. В исходном состоянии логический элемент DD3 закрыт, и напряжение на выходе одновибратора равно уровню логической «1» Логический элемент DD1 цепи запуска одновибратора в исходном состоянии закрыт, и на его выходе присутствует логическая «1». Уровни логических «1» с выходов закрытых элементов DD1 и DD3 поступают на входы элемента DD2, поддерживая его в открытом состоянии. На выходе открытого элемента DD2 имеет место логический «0», и поэтому конденсатор С разряжен через этот элемент и открытый диод VD до нулевого потенциала. При поступлении в момент времени t = t1 на вход одновибратора положительного импульса запуска элемент DD1 открывается, а элемент DD2 переходит в закрытое состояние. На выходе закрытого элемента DD2 возникает положительный скачок напряжения, который через конденсатор С передается на объединенный вход логического элемента DD3. Этот элемент открывается, и на его выходе устанавливается логический «0». После переключения конденсатор С начинает заряжаться, и напряжение на входе элемента DD3 снижается. В момент времени t = t2, когда напряжение становиться равным пороговому, одновибратор переключается и вновь переходит в устойчивое состояние. Одновибратор 

    Рис.7.34.

    Длительность импульса и = t2–t1 на выходе одновибратора зависит от постоянной времени цепи RC и также определяется выражением (6.12). Отметим, что в данной схеме выходной импульс имеет низкий потенциал (т. е. уровень логического «0») и для получения высокого потенциала (логической «1») необходимо на выходе мультивибратора включить инвертор.

    Реализация сложных логических функций на интегральных микросхемах