Электротехника Расчеты электрических цепей

ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1. Таким образом, вместо реального трансформатора с коэффициентом трансформации получают эквивалентный трансформатор с Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, т.е. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.

Так, например, если полная мощность вторичной обмотки реального трансформатора то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2' = I2 w2/w1, напишем выражение для E2':

Приравняем теперь активные мощности вторичной обмотки:

Определим приведенное активное сопротивление:

по аналогии:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

 

эквивалентная схема трансформатора

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 7).

ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 8).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2' (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2'= ) и кончая коротким замыканием (z2' = 0).

Реализация сложных логических функций на интегральных микросхемах