Курс лекций общая энергетика

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Курс «Общая энергетика» является дисциплиной общепрофессионального цикла. Мы будем изучать технологию производства электрической и тепловой энергии на электрических станциях различного типа (тепловых, атомных, газовых и парогазовых).

    Данный курс базируется на таких дисциплинах, как «Теоретические основы теплотехники», «Гидравлика и насосы», «Химия», «Физика» и другие.

    С ростом городов, посёлков требуется потребление всё больше и больше электрической и тепловой энергии. Как Вы знаете, источниками электрической и тепловой энергии являются электрические станции, преобразующие различные виды первичной энергии, заключённой в природных энергетических ресурсах. К ним прежде всего относится органическое топливо ― твёрдое (уголь, торф, сланцы), жидкое (нефть) и газообразное (природный газ).

    В настоящее время используется энергия рек, атомная энергия, в гораздо меньших масштабах используется ветровая, солнечная энергия, тепло геотермальных источников, энергия приливов и отливов и т.д. Однако подавляющая часть электрической и тепловой энергии получается от ископаемого топлива. Более 75% производимой во всём мире электроэнергии приходится на долю тепловых электрических станций, использующих органическое топливо ― уголь, нефть, природный газ.

    Электрическая, а за последние 40 лет тепловая энергия, являются основными по потреблению промышленностью и бытовыми потребителями.

    По производству электроэнергии Российская Федерация занимает первое место в мире. На её территории построены тепловые электростанции с такими мощными энергетическими блоками, как энергоблоки 300, 500, 800, 1200 МВт, проектируется энергоблок единичной мощностью 1500 МВт. В Приморском крае установлен и вырабатывает электроэнергию энергоблок мощностью 200 МВт. Он установлен на Приморской ГРЭС.

    Россия экспортирует электроэнергию в другие страны: Китай, Монголию, Литву, Болгарию, Грузию и т.д. К сожалению с распадом СССР потребление электроэнергии и тепла несколько уменьшилось. Это связано с закрытием многих промышленных предприятий, но постепенно экономика нашей страны улучшается, и наблюдается некоторый рост потребления тепловой и электрической энергии.

    22 декабря по указанию В.И.Ленина Государственной комиссией по электрификации России был принят «План электрификации России», он называется ГОЭЛРО. С тех пор все энергетики нашей страны ежегодно отмечают праздник «День энергетика» 22 декабря. Вы поступили в Дальневосточный энергетический техникум, поэтому День энергетика теперь ― и ваш праздник.

    Основными путями технического прогресса в энергетике являются:

    1. Увеличение мощности электростанций, а также увеличение мощности устанавливаемых основных и вспомогательных агрегатов. К ним относятся: парогенераторы, турбины, электрогенераторы, трансформаторы, различного типа подогреватели воды и пара, конденсаторы и т.д.

    2. Объединение электростанций различного типа в крупные энергетические системы.

    3. Повышение коэффициентов полезного действия (сокращённо КПД) основного и вспомогательного оборудования.

    4. Механизация и автоматизация всех основных и вспомогательных процессов.

    5. В гидроэнергетике должны сооружаться в основном мощные гидротурбины.

    Повышение КПД основного и вспомогательного оборудования достигается за счёт усовершенствования машин и механизмов, а также за счёт повышения давления и температуры пара за котлом.

    Исторические условия возникновения и развития энергетической техники

    Так как под энергией понимают способность тел совершать работу, то физической основой энергетической техники является движение, переходящее из одной формы в другую.

    Под энергетической техникой понимают совокупность средств производства, преобразования, передачи и распределения между потребителями различных форм энергии.

    Фундаментальной теоретической основой энергетической техники является закон сохранения и превращения энергии.

    В период первобытно-общинного строя единственным источником энергии являлись мускульные усилия человека. Освоение огня затем дало человеку источник тепловой энергии. Это было величайшим завоеванием человечества.

    Лишь на поздних стадиях, уже на подступах к веку металла, начинается использование прирученных и одомашненных животных: слонов, лошадей, верблюдов, волов.

    Биоэнергетика ― энергетика мускульных усилий господствовала многие тысячелетия. Она сохраняла свои позиции и в эпоху рабовладельческого общества, в котором труд раба ценился не выше, чем работа животных. Лишь когда концентрация мускульных усилий не в состоянии была решить техническую задачу (подъём больших тяжестей на высоту), стали применять изобретения древних механиков: блок, рычаг, наклонную плоскость и т.д.

    Применение в рабовладельческий период (например, в I веке до нашей эры в Александрии) водяных колёс для орошения земель, а затем применение ветродвигателей (ветровые мельницы), не вызвало ещё сколько-нибудь серьёзных изменений в общем уровне энергетической техники.

    Только в ХI веке, в эпоху феодального средневековья, в Европе начинают распространяться водяные и ветряные мельницы. Водяное колесо дало мощный толчок развитию металлургии, так как, во-первых, удалось повысить температуру в доменных печах, мехи которых приводились в движение от водяного колеса; во-вторых, расширились возможности откачки воды из шахт с помощью насосов, которые также приводились в движение от водяных колёс. Начиная с ХIII века, водяное колесо становится устройством, характеризующим технический уровень энергетической техники вплоть до промышленного переворота в конце ХVIII столетия.

    Капиталистический способ производства вызвал к жизни новую энергетическую технику, основой которой стала паровая машина. Изобретение универсального парового двигателя явилось вторым этапом промышленного переворота ХVIII века. На смену ранней гидроэнергетике пришла теплоэнергетика.

    Развитие энергетической техники протекало во взаимосвязи с развитием машин и характеризовалось непрерывным нарастанием единичных мощностей энергетических установок. В ХVIII веке в Англии была введена Уаттом единица измерения мощности «лошадиная сила», которая отражала реальные возможности одного из самых распространённых биологических «двигателей» прошлого ― конного привода. Единица мощности была определена исходя из работы, совершённой насосом, приводившимся в действие конной тягой, который откачивал воду из шахты в течение рабочего дня. Лучшие водяные и ветряные колёса средневековья достигали мощности 40÷60 лошадиных сил (1 л.с. = 0,736 кВт).

    Электрификация ― это стержень современной энергетической техники. Тепловая энергия играет огромную роль в развитии энергетической техники. В энергетическом балансе тепловая энергия составляет огромную долю (97,6%) всей энергии, получаемой человеком от природы при сжигании различных видов топлива. Сюда же можно отнести часть тепловой энергии, которая получается в атомных реакторах.

    Итак, качественные ступени развития энергетики можно представить в следующем виде:

    1. Биоэнергетика ― использование в качестве источника механической работы биологической энергии человека и животных.

    2. Механическая энергетика ― использование механической энергии потоков воды и воздуха.

    3. Теплоэнергетика ― использование в качестве источника механической работы теплоты, выделяющейся при сжигании топлива.

    4. Современная комплексная энергетика ― преимущественное использование в качестве первичной энергии тепловой и гидравлической, а в качестве вторичной ― электрической энергии.

    5. Атомная энергетика ― использование энергии ядерных реакций.

    6. Термоядерная энергетика ― использование реакции синтеза лёгких ядер с образованием более тяжёлых.

    7. Использование нетрадиционных видов энергии: солнечной, приливов и отливов, МГД-генераторов и т.д.

    Энергетические ресурсы и топливно-энергетический баланс.

    Энергетические ресурсы ― это различное ископаемое топливо: твёрдое (уголь, торф, горючие сланцы), жидкое (нефть, мазут), газообразное (природный газ, доменный газ), водные ресурсы (реки), а также нетрадиционные виды энергии: солнечная, ветровая, геотермальная и т.д.). Ископаемое топливо является невозобновляемыми ресурсами, а такие виды энергии, как солнечная, ветровая, а также энергия рек являются возобновляемыми ресурсами.

    Топливно-энергетический баланс ― это обобщающая характеристика объёмов добычи, переработки, транспорта, преобразования и распределения первичных, переработанных и преобразованных видов топлива и энергии, начиная от стадии добычи топливно-энергетических ресурсов и кончая стадией подачи всех видов топлив и энергии к энергопотребляющим установкам. Все эти этапы анализируются и прогнозируются.

    Задачей составления и анализа отчётных топливно-энергетических балансов в первую очередь является получение ясной и исчерпывающей характеристики состояния топливно-энергетического хозяйства.

    Анализ топливно-энергетического баланса позволяет выявить потери топливно-энергетических ресурсов, связанные с добычей топлива, а также распределением тепловой и электрической энергий в виде пара и горячей воды. Например, потери при использовании природных ресурсов составляет около 60%, остальное приходится на энергопотребляющие установки, использующие подведённое тепло, электроэнергию и топливо.

    Таким образом, позволяя широко использовать природные энергетические ресурсы, широко механизировать и автоматизировать производство, электрификация непрерывно увеличивает производительность труда в энергетике.

    Постепенно невозобновляемые природные ресурсы себя исчерпывают, поэтому инженеры и учёные всех развитых стран, в том числе и России, ищут новые неисчерпаемые энергетические ресурсы. На Камчатке, например, работают несколько геотермальных электростанций, в Крыму работает электростанция на солнечной энергии и таких примеров можно привести множество.

    Энергетика