Курс лекций общая энергетика

Начертательная геометрия
Фронтально проецирующая плоскость
Фронтальная плоскость уровня
Фронталь плоскости
Прямая, параллельная плоскости
Взаимная параллельность плоскостей
Примеры изображения плоскостей общего и частного положения
Задание поверхности на комплексном чертеже
Определитель поверхности
Алгоритм конструирования поверхности
Развертывающиеся поверхности
Комплексный чертеж призматической поверхности
Задание кривых линейчатых поверхностей
Задание цилиндрической поверхности общего вида на комплексном чертеже
Неразвертывающиеся линейчатые поверхности с двумя направляющими
Алгоритм построения цилиндроида
Коноид
Поверхности вращения
Поверхности вращения второго порядка
Сфера образуется вращением окружности
Эллипсоид вращения
Гиперболоид вращения
Тор- поверхность вращения 4 порядка
Сконструировать поверхность: тор-кольцо
Винтовые поверхности
Решение позиционных и метрических задач
Позиционные задачи
Решение главных позиционных задач
Конические сечения
Построить линию пересечения сферы
Метрические задачи.
Построение плоскости, касательной к поверхности
Задачи на определение расстояний между геометрическими фигурами
Преобразование комплексного чертежа
Плоский чертёж
Третья основная задача преобразования комплексного чертежа
Решение четырех основных задач преобразованием комплексного чертежа
Плоскость общего положения поставить в положение проецирующей
Решение позиционных задач с помощью преобразования комплексного чертежа
Технические чертежи

Изображения на технических чертежах

Разрезы
Классификация разрезов
Соединение части вида и части разреза
Сечения
Выносные элементы
По наглядному изображению построить три вида детали и выполнить необходимые разрезы.
Построить три вида детали и выполнить необходимые разрезы
Сфера
Аксонометрия
Изометрия окружности
Прямоугольная диметрия
Энергетика
  • Тепловые электрические станции
  • Основные элементы паровых электростанций
  • Технологическая схема ТЭС
  • Отопление и горячее водоснабжение (ГВС)
  • Топливный тракт электростанции
  • Сжигание жидкого топлива на электростанции
  • Тракт шлакозолоудаления
  • Виды органического топлива
  • Характеристики топлива
  • Элементы теории термодинамики
  • Термодинамический процесс
  • Изобарный процесс
  • Круговые процессы или циклы
  • Энтропия как параметр термодинамической
    системы
  • Термодинамические процессы водяного пара
  • Основные параметры воды и водяного пара
  • Основное тепловое оборудование ТЭС
  • Основные параметры и обозначения
    паровых котлов
  • Паровые турбины
  • Основные узлы и конструкция паровой турбины
  • Принципиальная схема конденсационной
    установки
  • Теплоэлектроцентрали (ТЭЦ)
  • Компоновка главного корпуса
    и генеральный план ТЭС
  • Строительная компоновка главного корпуса ТЭС
  • Генеральный план электростанции
  • Газотурбинные, парогазовые электрические
    станции
  • Атомные электростанции
  • Принципиальные тепловые схемы АЭС
  • Альтернативные источники получения
    электрической энергии
  • Приливные электростанций (ПЭС).
  • Энергия морских течений
  • Различные типы ветроагрегатов
  • Экология
  • Экологические проблемы тепловой энергетики
  • Экологические проблемы ядерной энергетики
  •  

    Теплоэлектроцентрали (ТЭЦ)

    Тепловая энергия требуется для технологических нужд промышленности, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха, для горячего водоснабжения (ГВС). Для производственных целей обычно требуется перегретый пар, температура которого на 15÷200С выше температуры насыщения, так как при транспортировке к потребителю часть пара конденсируется и соответственно при этом происходит потеря теплоты. На отопление, вентиляцию от ТЭЦ вода поступает при температуре 95÷1800С, в зависимости от расчётного температурного графика.

    Таким образом, централизованная система теплоснабжения включает в себя:

    теплоисточник (ТЭЦ или котельная), трубопроводы для транспортирования тепла (пара или воды) и установки теплопотребителей, использующие теплоту для промышленных или бытовых нужд.

    Централизованное теплоснабжение от ТЭЦ в качестве источника теплоты называется теплофикацией. Тепловая нагрузка электростанции, определяемая расходом теплоты на производственные процессы и бытовые нужды (горячее водоснабжение), практически не зависит от температуры наружного воздуха. Однако летом эта нагрузка несколько меньше, чем зимой. Ведь летом отопления нет. В то же время промышленная и бытовая тепловые нагрузки резко изменяются в течение суток. Кроме того, среднесуточная нагрузка электростанции при использовании теплоты на бытовые нужды в конце недели, в предпразничные и праздничные дни значительно выше, чем в другие рабочие дни недели.

    Электростанции, предназначенные для выработки электроэнергии, отпуска пара и горячей воды потребителям, называются теплоэлектроцентралями (сокращённо ТЭЦ). Выработка электронергии и тепла с паром и горячей водой называется комбинированной выработкой энергии.

     Теплоцентрали могут

     иметь турбины с

     противодавлением или

     РОУ или конденсационные с

     регулируемыми отборами

     пара, или те и другие.

     В схемах с турбинами с

     противодавлением типа Р

     Система регенерации весь отработавший пар

     подаётся тепловому

     Рис. 35. потребителю, поэтому

    существует прямая зависимость между вырабатываемой электроэнергией и расходом этого пара.

    При пониженных электрических нагрузках часть пара необходимо пропускать помимо турбины через редукционно-охладительную установку (РОУ).

    При высоких электрических нагрузках небольшой потребности в паре у теплового потребителя недостающая электроэнергия должна вырабатываться на электростанциях с турбинами конденсационного типа, или на этой же станции при наличии разнотипных турбин. Таким образом, установка будет использоваться достаточно эффективно только в том случае, если она рассчитана на ту часть тепловой нагрузки, которая сохраняется в течение большей части года. Давление пара за турбиной должно быть выбрано таким, какое требуется потребителю.

    На электростанциях с турбинами, имеющими регулируемые отборы, выработка электроэнергии и отпуск теплоты могут изменяться в достаточно широких пределах независимо друг от друга. При этом полная номинальная электрическая мощность, если это требуется может быть достигнута в отсутствии тепловой нагрузки. Турбины такого типа имеют один, два или три регулируемых отборов. При одном регулируемом отборе отводимый от турбины пар может поступать на производственные нужды (турбины типа П) или на теплофикацию (турбины типа Т). При двух регулируемых отборах либо оба отбора являются теплофикационными (турбины типа Т), либо один из них является производственным, а другой теплофикационным (турбины типа ПТ). Как мы знаем, имеются также турбоустановки с одним производственным и двумя теплофикационными отборами (например, ПТ-80-130/13).

    Так общими являются линии промышленного отбора пара турбин типа ПТ и Р, линии обратного конденсата внешних потребителей, добавочной воды, подпиточной воды тепловых сетей. Однако сетевые подогревательные установки выполняют обычно индивидуальными у каждого турбоагрегата типа Т или ПТ. На такой сложной ТЭЦ с разнотипными турбоагрегатами принципиальная тепловая схема включает по одному турбоагрегату каждого типа. ПТС такой ТЭЦ включает схемы отпуска пара и горячей воды, а также регенеративного подогрева питательной воды для каждого турбоагрегата, подготовки добавочной и подпиточной воды.

     


     РОУ

     


     Система регенерации

     


     Рис.36.

    Регулирование тепловой нагрузки

    Как мы уже знаем, тепло для отопления, ГВС и бытовых нужд теплоэлектроцентраль отпускает с горячей водой.

    Сетевую воду подогревают в теплообменниках поверхностного типа паром из отборов или противодавления теплофикационных турбин и подают насосами по трубопроводам горячей воды к потребителям. После отдачи тепла (охлаждения)в отопительных установках потребителей вода вновь возвращается на ТЭЦ. Система трубопроводов горячей и охлаждённой воды образует тепловую сеть. Соответственно воду, циркулирующую по тепловой сети, называют сетевой водой, насосы – сетевыми насосами, а теплообменники на ТЭЦ ― сетевыми подогревателями. Трубопроводы, по которым подаётся к потребителям горячая вода, называют подающими, а те, по которым охлаждённая вода возвращается на ТЭЦ ― обратными.

    Мы же знаем, что отопительная и вентиляционная тепловые нагрузки зависят от температуры наружного воздуха. Поэтому необходимо регулировать отпуск теплоты в соответствии с изменением нагрузки.

    Применяется преимущественно центральное регулирование, осуществляемое на ТЭЦ и дополняемое местными автоматическими регуляторами. При центральном регулировании применяется либо количественное регулирование, сводящееся к изменению расхода сетевой воды в подающем трубопроводе при неизменной её температуре, либо качественное, при котором расход воды остаётся постоянным, а меняется её температура.

    Качественное регулирование позволяет поддерживать давление греющего пара из отборов турбины на сетевые подогреватели в соответствии с требуемой температурой сетевой воды, понижая или повышая это давление путём уменьшения или увеличения расхода пара на сетевые подогреватели. Меньше давление и температура пара в теплофикационном отборе турбины, на меньшую температуру нагреют сетевую воду в соответствии с наружной температурой воздуха, то есть в соответствии с расчётным температурным графиком. Такой метод регулирования отпуска тепла энергетически наиболее выгоден и получил преимущественное распространение.

    Приведу пример температурного графика 150/700С. При температуре наружного воздуха –100С и расчётной температуре по г. Владивостоку –240С температура прямой сетевой воды должна быть 109,60С, а обратной 56,30С. При –200С температура прямой сетевой воды должна быть 138,60С, а обратной –66,20С.

    Покрытие основной и пиковой отопительной нагрузок

    На крупных ТЭЦ для повышения температуры прямой сетевой воды, идущей на отопление, применяются пиковые водогрейные котлы (ПВК).

    На ТЭЦ с отопительной нагрузкой можно применять турбины с противодавлением или с конденсацией и отбором пара. Однако применение на ТЭЦ турбин с противодавлением очень ограничено, так как сезонная отопительная нагрузка не обеспечивает круглогодичного производства электроэнергии на тепловом потреблении. Поэтому возможная мощность турбин с противодавлением, отпускающих тепло на отопление и бытовых нужд, не превышает 5÷10% общей мощности теплофикационных турбин отопительного назначения. Выбор давления пара в отопительных отборах турбин зависит от графиков температуры сетевой воды и отопительной нагрузки, а также от способа покрытия пиков нагрузки: от пиковых сетевых подогревателей или от пиковых водогрейных котлов.

    Для удешевления пиковые водогрейные котлы устанавливают частично на открытом воздухе, а дымовые газы из них отводят или в относительно невысокие металлические трубы, устанавливаемые на перекрытии над ними, или часто ― в основные железобетонные дымовые трубы ТЭЦ, около которых в этом случае устанавливают водогрейные котлы. Пиковые водогрейные котлы можно одновременно рассматривать как некоторой тепловой резерв вне периодов пиковой отопительной нагрузки.

    Давление пара в отопительном отборе теплофикационных турбин типа Т принято регулируемым в пределах от 0,12 до 0,25 МПа, то есть выше атмосферного, чтобы исключить возможный присос воздуха. ухудшающего теплообмен в сетевых подогревателях. Пар из отбора турбины направлялся в основные сетевые подогреватели, а пиковые сетевые подогреватели обогревались паром из парогенераторов через РОУ. А РОУ всегда в этом случае неэкономичны.

    В дальнейшем, особенно на современных мощных турбоагрегатах, пиковые сетевые подогреватели были заменены пиковыми водогрейными котлами, а основной подогрев сетевой воды стали осуществлять в двух последовательно включённых сетевых подогревателях, питаемых паром из двух регулируемых теплофикационных отборов турбины. Давление пара в верхнем отборе регулируется обычно в пределах 0,06÷0,25 МПа, в нижнем изменяется ― в пределах 0,05÷0,20 МПа. Давление верхнего отбора регулируют поворотной диафрагмой, устанавливаемой за камерой нижнего отбора.

    Если нижний теплофикационный отбор осуществляется на отводе пара из цилиндра среднего давления турбины, то регулирующую диафрагму устанавливают перед входом пара в первую ступень ЦНД. Ступени турбины между двумя теплофикационными отборами образуют так называемый промежуточный, или теплофикационный отсек.

    Теплофикационные турбины с промышленным и отопительным отбором (типа ПТ), изготовленные на УТМЗ, имеют два отопительных отбора, кроме промышленного. Часто в конденсаторе крупных турбин встроен теплофикационный пучок для подогрева сетевой воды.

    В холодные дни отопительного сезона теплота к сетевой воде в сетевых подогревателях подводится из отборов турбины и от ПВК или пиковых сетевых подогревателей. ПВК или пиковые сетевые подогреватели включаются в работу, когда расходы пара в отборах достигают максимума. Это происходит при определённой температуре наружного воздуха , которая, как мы знаем, называется расчётной температурой отбора.

    Схемы включения сетевых подогревателей

    Обычно пар к сетевым подогревателям подводится из нерегулируемых отборов, поэтому тепловые режимы их существенно зависят от давления в отборах, а следовательно, от электрической мощности турбин. На крупных теплоэлектроцентралях сетевая установка подключается к регулируемому теплофикационному отбору пара (основные подогреватели), а пиковые ― через РОУ или от общей магистрали 1,27 МПа.

    Современные турбоагрегаты ТЭЦ имеют двухступенчатые сетевые подогревательные установки, к которым подаётся пар из верхнего и нижнего теплофикационных отборов турбины.

    Вода из обратной тепломагистрали теплосети поступает на ТЭЦ с давлением в зависимости от местных условий, обычно до 0,4 МПа. При наличии в конденсаторах турбин встроенных теплофикационных пучков сетевая вода предварительно нагревается в них и затем сетевым насосом первого подъёма прокачивается через сетевые подогреватели.

    После сетевых подогревателей насосами второго подъёма вода подаётся при низких температурах наружного воздуха через ПВК или пиковые сетевые подогреватели, а при повышенных температурах наружного воздуха – помимо них в тепловую сеть.

    Давление воды после сетевых насосов второго подъёма зависит от протяжённости тепловой сети, рельефа местности, гидравлических сопротивлений сети и пиковых водогрейных котлов и составляет примерно 2 МПа.

    Давление за насосами первого подъёма определяется гидравлическими сопротивлениями сетевых подогревателей и трубопроводов, а также условиями предотвращения вскипания подогретой воды перед насосами второго подъёма.

    У каждой ступени сетевых подогревателей устраивают обводы воды, которые можно использовать для регулирования её температуры за ступенями. Конденсат греющего пара из каждого сетевого подогревателя насосом отводится в деаэратор питательной воды или непосредственно в линию основного конденсата.

    При сверхкритическом начальном давлении пара в прямоточных парогенераторах необходимо очищать конденсат греющего пара сетевых подогревателей от солей, которые могут попасть в конденсат из-за присоса сетевой воды. В этих случаях конденсат греющего пара верхней ступени сетевых подогревателей целесообразно сливать каскадно в нижнюю ступень, а общий поток конденсата после охлаждения направляется на глубокое химическое обессоливание.

    При включённых пиковых подогревателях их конденсат греющего пара обычно направляют в паровое пространство основных подогревателей. Температура после пиковых подогревателей лежит в пределах 130÷1500С.

    1.6.4. Основное и вспомогательное оборудование

    теплофикационных установок

    Вода, подаваемая в тепловую сеть для нужд потребителей, на ТЭЦ подогревается в сетевых подогревателях турбоустановок, в пиковых подогревателях и в пиковых водогрейных котлах, которые относятся к основному теплофикационному оборудованию ТЭЦ. К вспомогательному теплофикационному оборудованию относятся: подпиточная установка теплосети, сетевые насосы I-ой и II-ой ступеней, баки-аккумуляторы, рециркуляционные насосы водогрейных котов и т. д.

    Пиковые водогрейные котлы предназначены для установки на ТЭЦ с целью покрытия пиков теплофикационных нагрузок. Пиковые водогрейные котлы обычно устанавливаются в отдельных помещениях на крупных ТЭЦ или в главном корпусе на небольших ТЭЦ. Топливом этих котлов служит большей частью мазут или газ. Ввиду малого использования в течение года пиковые котлы выполняют простыми по конструкции и недорогими. Здание может выполняться лишь для нижней части котлов, верхняя часть их при этом остаётся на открытом воздухе. До ввода в работу ТЭЦ водогрейные котлы можно использовать для временного централизованного теплоснабжения района. Сетевая вода нагревается последовательно в сетевых подогревателях до 110÷1200С, а затем в ПВК до 1500С максимально.

    Во избежание коррозии металла котла температура на входе в него должна быть не ниже 50÷600С, что достигается рециркуляцией и смешением горячей и холодной воды. Расчётный КПД водогрейных котлов на газе и мазуте достигает 91÷93%. Выпускаются и используются ПВК на угле. У них своя пылеподготовка, дымососы и т.д.

    Широко применяются водогрейные котлы типов ПТВМ-100 и ПТВМ-180 на газе и мазуте с номинальной теплопроизводительностью 419 и 760 ГДж/ч при подогреве 2140 и 3840 т/ч воды соответственно от 104 до 1500С.

    Пароводяные подогреватели теплоподготовительных установок предназначены для подогрева сетевой воды паром от турбин или от котлов через РОУ. До 1967 г. выпускались вертикальные пароводяные подогреватели сетевой воды типов БО и БП, которые установлены на многих ТЭЦ и котельных. В зависимости от характера покрываемых нагрузок подогревателям присваивали обозначение БО ― для основной нагрузки и БП ― для пиковой. Число после буквенного обозначения соответствует площади поверхности нагрева в м2, например, БО-350.

    В настоящее время вместо подогревателей типа БО и БП выпускаются вертикальные подогреватели сетевой воды типа ПСВ и горизонтальные типа ПСГ. Например, ПСВ-500-3-23, где ПСВ ― подогреватель сетевой воды, 500 ― площадь поверхности нагрева, м2, 3 ― допустимое избыточное давление по пару, кг/см2, 23 ― допустимое избыточное давление по воде, кг/см2. Цифра 3 говорит, что этот подогреватель является основным, так как давление пара невелико. В качестве пиковых применяются подогреватели типа ПСВ-315-14-23, ПСВ-500-14-23 и т.д. Горизонтальные ― ПСГ-2300-3-8-II, ПСГ-2300-2-8-I и другие. Все обозначения в цифрах те же, а римские I и II обозначают номер регулируемого теплофикационного отбора турбины (верхний и нижний).

    Вода в пароводяных сетевых подогревателях подаётся внутрь трубок, изготовленных из латуни Л-68. Наружный диаметр трубок у вертикальных подогревателей составляет 19 мм при толщине стенки 0,75 мм, а в подогревателях типа ПСГ наружный диаметр трубки ― 24 мм при толщине её в 1 мм.

    При использовании пароводяных сетевых подогревателей первой ступенью нагрева служат охладители конденсата типа ОГ-6, ОГ-35, ОГ-130 и т.д., где цифра обозначает площадь поверхности охлаждения в м2.

    Деаэраторы подпитки теплосети относятся к вспомогательному оборудованию теплофикационной установки.

    Для подпитки тепловых сетей с открытой системой горячего водоснабжения (ГВС) используется вода только вода питьевого качества. При закрытых системах ГВС, при установке у потребителей местных подогревателей воды. Также должна использоваться питьевая вода. Деаэрация подпиточной воды производится в атмосферных и вакуумных деаэраторах. Количество и производительность деаэраторов подпиточной воды выбирается по её расходу. Резервных деаэраторов не устанавливается.

    Баки-аккумуляторы устанавливаются на ТЭЦ при схемах теплоснабжения с непосредственным водозабором на ГВС для выравнивания неравномерности потребления горячей воды в течение суток. Баки выбирают на основании почасового графика расхода воды за сутки наибольшего водопотребления. При отсутствии суточного графика водозабора вместимость баков-аккумуляторов разрешается принимать равной 10-кратному среднему расходу горячей воды за отопительный период.

    Сетевые насосы служат для подачи горячей воды по теплофикационным сетям и в зависимости от места установки применяются в качестве насосов первого подъёма, подающих воду из обратного трубопровода в сетевые подогреватели; второго подъёма для подачи воды после сетевых подогревателей в теплосеть; рециркуляционных, установленных после пиковых водогрейных котлов.

    Сетевые насосы могут работать как на ТЭЦ, так и на промежуточных насосных станциях теплофикационных систем (на протяжённых теплосетях, когда напора сетевых насосов, установленных на ТЭЦ, не достаточно для преодоления гидравлических сопротивлений сети). Сетевые насосы должны обладать повышенной надёжностью, так как перебои или неполадки в работе насосов сказываются на режиме работы ТЭЦ и потребителей. Основной особенностью работы сетевых насосов являются колебания температуры подаваемой воды в широких пределах, что в свою очередь вызывает изменение давления внутри насоса. Сетевые насосы должны надёжно работать в широком диапазоне подач.

    Сетевые насосы предназначены для работы на чистой воде с содержанием твёрдых включений не более 5 мг/кг с размером частичек до 0,2 мм. Обычно сетевые насосы ― центробежные, горизонтальные, с приводом от электродвигателя.

    В качестве сетевых насосов применяются такие: СЭ-3200-160 (подача ― 3200 м3/ч, напор ― 160 м вод. ст. или 1,57 МПа), СЭ-5000-160 (подача ― 5000 м3/ч, напор ― 160 м вод. ст. или 1,57 МПа) и другие.

    Основным отличительным признаком сетевых насосов является количество ступеней, по которому сетевые насосы делятся на одно- и двухступенчатые.

    Трубопроводы и арматура тепловых сетей при рабочей температуре сетевой воды выше 1150С независимо от давления должны соответствовать требованиям «Правил устройств и безопасной эксплуатации трубопроводов пара и горячей воды».

    Контрольные вопросы.

    1. Что включает в себя централизованная система теплоснабжения?

    2. Для чего предназначена ТЭЦ?

    3. Какое регулирование тепловой сети в основном применяется на ТЭЦ и почему?

    4. Для чего предназначен пиковый водогрейный котёл (ПВК)?

    5. Для чего предназначен пароводяной подогреватель на ТЭЦ?

    6. Для чего предназначен сетевой насос на ТЭЦ?

    7. Какова особенность работы сетевого насоса?

    Энергетика