Лекции по сопромату, теория, практика, задачи Моменты инерции Изгиб с кручением Вычислить упругую объемную деформацию Рассчитатьна прочность по III-ей теории прочности
Моменты инерции сечения Деформации и перемещения при кручении валов Определение опорных реакций Расчет статически неопределимых балок Расчет ферм Расчеты на прочность по допускаемым напряжениям

Лекции по сопромату, теория, практика, задачи

Моменты инерции сечения.

Осевым, или экваториальным, моментом инерции сечения называется геометрическая характеристика, численно равная интегралу:
относительно оси х

f_6.gif          (1.6)

относительно оси у

f_6a.gif

где у - расстояние от элементарной площадки dA до оси х (см. рис. 1.1.); х - расстояние от элементарной площадки dA до до оси у; D - область интегрирования.

Решение многих геометрических задач на комплексных чертежах этих объектов часто усложняется из-за того, что заданные геометрические объекты расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искаженном виде. Поэтому для более простого решения задач прибегают к преобразованию комплексного чертежа, которое переводит интересующие нас прямые и плоские фигуры из общего положения относительно плоскостей проекций в частное (прямые и плоскости проецирующие и уровня).

Полярным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

f_7.gif          (1.7)

где p - расстояние от площадки dA до точки (полюса) (см. рис. 1.1.) относительно которой вычисляется полярный момент инерции.

Осевой и полярный моменты инерции - величины всегда положительные.

Действительно, независимо от знака координаты произвольной площадки соответствующее слагаемое положительно, так как в него входит квадрат этой координаты.

Центробежным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

f_8.gif          (1.8)

где х,у - расстояния от площадки dA до осей x и y.

Моменты инерции измеряются в единицах длины в четвертой степени (по СИ - м4, хотя для прокатных профилей по ГОСТу - см4).

Центробежный момент инерции может быть положительным, отрицательным и, в частном случае, равным нулю.

1_3.gif

Если взаимно перпендикулярные оси х и у или одна из них являются осями симметрии фигуры, то относительно таких осей центробежный момент инерции равен нулю. Действительно, для симметричной фигуры всегда можно выделить два элемента ее площади (рис. 1.3.), которые имеют одинаковые ординаты у и равные, но противоположные по знаку абсциссы х. Составляя сумму произведений xydA для таких элементов, т.е. вычисляя интеграл (1.8.), получают в результате нуль.

Легко доказать, что полярный момент инерции относительно какой-либо точки равен сумме осевых моментов инерции относительно двух взаимно перпендикулярных осей, проходящих через эту точку.

Действительно, из рис. 1.1 видно, что

t1_5.gif
Подставив это значение p2 в выражение (1.7.) получим

t1_6.gif

Следовательно, Ip = Ix + Iy.

Геометрические характеристики сечений. Статический момент сечения. При дальнейшем изучении вопросов прочности, жесткости и устойчивости нам придется иметь дело с некоторыми геометрическими характеристиками сечения: статическими моментами, моментами инерции, моментами сопротивления.

Моменты инерции простых сечений

Моменты инерции сложных фигур. Момент инерции сложной фигуры равен сумме моментов инерции ее составных частей  


Задачи по сопромату